Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (191)
  • Open Access

    ARTICLE

    A Tabletop Nano-CT Image Noise Reduction Network Based on 3-Dimensional Axial Attention Mechanism

    Huijuan Fu, Linlin Zhu, Chunhui Wang, Xiaoqi Xi, Yu Han, Lei Li, Yanmin Sun, Bin Yan*

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 1711-1725, 2024, DOI:10.32604/cmc.2024.049623

    Abstract Nano-computed tomography (Nano-CT) is an emerging, high-resolution imaging technique. However, due to their low-light properties, tabletop Nano-CT has to be scanned under long exposure conditions, which the scanning process is time-consuming. For 3D reconstruction data, this paper proposed a lightweight 3D noise reduction method for desktop-level Nano-CT called AAD-ResNet (Axial Attention DeNoise ResNet). The network is framed by the U-net structure. The encoder and decoder are incorporated with the proposed 3D axial attention mechanism and residual dense block. Each layer of the residual dense block can directly access the features of the previous layer, which More >

  • Open Access

    ARTICLE

    Development of a Novel Noise Reduction Algorithm for Smart Checkout RFID System in Retail Stores

    Shazielya Shamsul1, Mohammed A. H. Ali1,2,*, Salwa Hanim Abdul-Rashid1,2, Atef M. Ghaleb3, Fahad M. Alqahtani4

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 1277-1304, 2024, DOI:10.32604/cmc.2024.049257

    Abstract This paper presents a smart checkout system designed to mitigate the issues of noise and errors present in the existing barcode and RFID-based systems used at retail stores’ checkout counters. This is achieved by integrating a novel AI algorithm, called Improved Laser Simulator Logic (ILSL) into the RFID system. The enhanced RFID system was able to improve the accuracy of item identification, reduce noise interference, and streamline the overall checkout process. The potential of the system for noise detection and elimination was initially investigated through a simulation study using MATLAB and ILSL algorithm. Subsequently, it More >

  • Open Access

    ARTICLE

    FFRA: A Fine-Grained Function-Level Framework to Reduce the Attack Surface

    Xingxing Zhang1, Liang Liu1,*, Yu Fan1, Qian Zhou2

    Computer Systems Science and Engineering, Vol.48, No.4, pp. 969-987, 2024, DOI:10.32604/csse.2024.046615

    Abstract System calls are essential interfaces that enable applications to access and utilize the operating system’s services and resources. Attackers frequently exploit application’s vulnerabilities and misuse system calls to execute malicious code, aiming to elevate privileges and so on. Consequently, restricting the misuse of system calls becomes a crucial measure in ensuring system security. It is an effective method known as reducing the attack surface. Existing attack surface reduction techniques construct a global whitelist of system calls for the entire lifetime of the application, which is coarse-grained. In this paper, we propose a Fine-grained Function-level framework… More >

  • Open Access

    ARTICLE

    Scientific Elegance in NIDS: Unveiling Cardinality Reduction, Box-Cox Transformation, and ADASYN for Enhanced Intrusion Detection

    Amerah Alabrah*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 3897-3912, 2024, DOI:10.32604/cmc.2024.048528

    Abstract The emergence of digital networks and the wide adoption of information on internet platforms have given rise to threats against users’ private information. Many intruders actively seek such private data either for sale or other inappropriate purposes. Similarly, national and international organizations have country-level and company-level private information that could be accessed by different network attacks. Therefore, the need for a Network Intruder Detection System (NIDS) becomes essential for protecting these networks and organizations. In the evolution of NIDS, Artificial Intelligence (AI) assisted tools and methods have been widely adopted to provide effective solutions. However,… More >

  • Open Access

    ARTICLE

    A Power Data Anomaly Detection Model Based on Deep Learning with Adaptive Feature Fusion

    Xiu Liu, Liang Gu*, Xin Gong, Long An, Xurui Gao, Juying Wu

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4045-4061, 2024, DOI:10.32604/cmc.2024.048442

    Abstract With the popularisation of intelligent power, power devices have different shapes, numbers and specifications. This means that the power data has distributional variability, the model learning process cannot achieve sufficient extraction of data features, which seriously affects the accuracy and performance of anomaly detection. Therefore, this paper proposes a deep learning-based anomaly detection model for power data, which integrates a data alignment enhancement technique based on random sampling and an adaptive feature fusion method leveraging dimension reduction. Aiming at the distribution variability of power data, this paper developed a sliding window-based data adjustment method for… More >

  • Open Access

    ARTICLE

    Attribute Reduction of Hybrid Decision Information Systems Based on Fuzzy Conditional Information Entropy

    Xiaoqin Ma1,2, Jun Wang1, Wenchang Yu1, Qinli Zhang1,2,*

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2063-2083, 2024, DOI:10.32604/cmc.2024.049147

    Abstract The presence of numerous uncertainties in hybrid decision information systems (HDISs) renders attribute reduction a formidable task. Currently available attribute reduction algorithms, including those based on Pawlak attribute importance, Skowron discernibility matrix, and information entropy, struggle to effectively manages multiple uncertainties simultaneously in HDISs like the precise measurement of disparities between nominal attribute values, and attributes with fuzzy boundaries and abnormal values. In order to address the aforementioned issues, this paper delves into the study of attribute reduction within HDISs. First of all, a novel metric based on the decision attribute is introduced to solve… More >

  • Open Access

    ARTICLE

    A Novel Approach to Breast Tumor Detection: Enhanced Speckle Reduction and Hybrid Classification in Ultrasound Imaging

    K. Umapathi1,*, S. Shobana1, Anand Nayyar2, Judith Justin3, R. Vanithamani3, Miguel Villagómez Galindo4, Mushtaq Ahmad Ansari5, Hitesh Panchal6,*

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 1875-1901, 2024, DOI:10.32604/cmc.2024.047961

    Abstract Breast cancer detection heavily relies on medical imaging, particularly ultrasound, for early diagnosis and effective treatment. This research addresses the challenges associated with computer-aided diagnosis (CAD) of breast cancer from ultrasound images. The primary challenge is accurately distinguishing between malignant and benign tumors, complicated by factors such as speckle noise, variable image quality, and the need for precise segmentation and classification. The main objective of the research paper is to develop an advanced methodology for breast ultrasound image classification, focusing on speckle noise reduction, precise segmentation, feature extraction, and machine learning-based classification. A unique approach… More >

  • Open Access

    ARTICLE

    Anemarsaponin B mitigates acute pancreatitis damage in mice through apoptosis reduction and MAPK pathway modulation

    YI HU1,#, ZHONGYANG REN2,#, ZHENGZHONG ZHAO1, YONGJIA HUANG3, WANTING HUANG3, JIE LIU3,*, LING DING3,*

    BIOCELL, Vol.48, No.5, pp. 745-758, 2024, DOI:10.32604/biocell.2024.049140

    Abstract Background: Acute pancreatitis (AP), known for its rapid onset and significant incidence and mortality rates, presents a clinical challenge due to the limited availability of effective treatments and preventive measures. Anemarsaponin B (ASB) has emerged as a potential therapeutic agent, demonstrating capabilities in reducing immune inflammation, positioning it as a promising candidate for AP treatment. Methods: We investigated the effects of ASB on AP in mice, induced by caerulein and lipopolysaccharide (LPS). Peripheral blood samples were collected 24 h post-induction with caerulein to assess of key biomarkers including lipase, amylase, TNF-α, IL-1β, IL-6, SOD, and… More >

  • Open Access

    ARTICLE

    Automated Algorithms for Detecting and Classifying X-Ray Images of Spine Fractures

    Fayez Alfayez*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 1539-1560, 2024, DOI:10.32604/cmc.2024.046443

    Abstract This paper emphasizes a faster digital processing time while presenting an accurate method for identifying spine fractures in X-ray pictures. The study focuses on efficiency by utilizing many methods that include picture segmentation, feature reduction, and image classification. Two important elements are investigated to reduce the classification time: Using feature reduction software and leveraging the capabilities of sophisticated digital processing hardware. The researchers use different algorithms for picture enhancement, including the Wiener and Kalman filters, and they look into two background correction techniques. The article presents a technique for extracting textural features and evaluates three… More >

  • Open Access

    ARTICLE

    Improving Thyroid Disorder Diagnosis via Ensemble Stacking and Bidirectional Feature Selection

    Muhammad Armghan Latif1, Zohaib Mushtaq2, Saad Arif3, Sara Rehman4, Muhammad Farrukh Qureshi5, Nagwan Abdel Samee6, Maali Alabdulhafith6,*, Yeong Hyeon Gu7, Mohammed A. Al-masni7

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 4225-4241, 2024, DOI:10.32604/cmc.2024.047621

    Abstract Thyroid disorders represent a significant global health challenge with hypothyroidism and hyperthyroidism as two common conditions arising from dysfunction in the thyroid gland. Accurate and timely diagnosis of these disorders is crucial for effective treatment and patient care. This research introduces a comprehensive approach to improve the accuracy of thyroid disorder diagnosis through the integration of ensemble stacking and advanced feature selection techniques. Sequential forward feature selection, sequential backward feature elimination, and bidirectional feature elimination are investigated in this study. In ensemble learning, random forest, adaptive boosting, and bagging classifiers are employed. The effectiveness of… More >

Displaying 1-10 on page 1 of 191. Per Page