Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (196)
  • Open Access

    ARTICLE

    Performance Evaluation of Machine Learning Algorithms in Reduced Dimensional Spaces

    Kaveh Heidary1,*, Venkata Atluri1, John Bland2

    Journal of Cyber Security, Vol.6, pp. 69-87, 2024, DOI:10.32604/jcs.2024.051196

    Abstract This paper investigates the impact of reducing feature-vector dimensionality on the performance of machine learning (ML) models. Dimensionality reduction and feature selection techniques can improve computational efficiency, accuracy, robustness, transparency, and interpretability of ML models. In high-dimensional data, where features outnumber training instances, redundant or irrelevant features introduce noise, hindering model generalization and accuracy. This study explores the effects of dimensionality reduction methods on binary classifier performance using network traffic data for cybersecurity applications. The paper examines how dimensionality reduction techniques influence classifier operation and performance across diverse performance metrics for seven ML models. Four… More >

  • Open Access

    ARTICLE

    Dynamic Forecasting of Traffic Event Duration in Istanbul: A Classification Approach with Real-Time Data Integration

    Mesut Ulu1,*, Yusuf Sait Türkan2, Kenan Mengüç3, Ersin Namlı2, Tarık Küçükdeniz2

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 2259-2281, 2024, DOI:10.32604/cmc.2024.052323

    Abstract Today, urban traffic, growing populations, and dense transportation networks are contributing to an increase in traffic incidents. These incidents include traffic accidents, vehicle breakdowns, fires, and traffic disputes, resulting in long waiting times, high carbon emissions, and other undesirable situations. It is vital to estimate incident response times quickly and accurately after traffic incidents occur for the success of incident-related planning and response activities. This study presents a model for forecasting the traffic incident duration of traffic events with high precision. The proposed model goes through a 4-stage process using various features to predict the… More >

  • Open Access

    ARTICLE

    Improving the Effectiveness of Image Classification Structural Methods by Compressing the Description According to the Information Content Criterion

    Yousef Ibrahim Daradkeh1,*, Volodymyr Gorokhovatskyi2, Iryna Tvoroshenko2,*, Medien Zeghid1,3

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 3085-3106, 2024, DOI:10.32604/cmc.2024.051709

    Abstract The research aims to improve the performance of image recognition methods based on a description in the form of a set of keypoint descriptors. The main focus is on increasing the speed of establishing the relevance of object and etalon descriptions while maintaining the required level of classification efficiency. The class to be recognized is represented by an infinite set of images obtained from the etalon by applying arbitrary geometric transformations. It is proposed to reduce the descriptions for the etalon database by selecting the most significant descriptor components according to the information content criterion.… More >

  • Open Access

    REVIEW

    Multi-Aspect Critical Assessment of Applying Digital Elevation Models in Environmental Hazard Mapping

    Maan Habib1,*, Ahed Habib2, Mohammad Abboud3

    Revue Internationale de Géomatique, Vol.33, pp. 247-271, 2024, DOI:10.32604/rig.2024.053857

    Abstract Digital elevation models (DEMs) are essential tools in environmental science, particularly for hazard assessments and landscape analyses. However, their application across multiple environmental hazards simultaneously remains in need for a multi-aspect critical assessment to promote their effectiveness in comprehensive risk management. This paper aims to review and critically assess the application of DEMs in mapping and managing specific environmental hazards, namely floods, landslides, and coastal erosion. In this regard, it seeks to promote their utility of hazard maps as key tools in disaster risk reduction and environmental planning by employing high-resolution DEMs integrated with advanced More >

  • Open Access

    ARTICLE

    A Tabletop Nano-CT Image Noise Reduction Network Based on 3-Dimensional Axial Attention Mechanism

    Huijuan Fu, Linlin Zhu, Chunhui Wang, Xiaoqi Xi, Yu Han, Lei Li, Yanmin Sun, Bin Yan*

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 1711-1725, 2024, DOI:10.32604/cmc.2024.049623

    Abstract Nano-computed tomography (Nano-CT) is an emerging, high-resolution imaging technique. However, due to their low-light properties, tabletop Nano-CT has to be scanned under long exposure conditions, which the scanning process is time-consuming. For 3D reconstruction data, this paper proposed a lightweight 3D noise reduction method for desktop-level Nano-CT called AAD-ResNet (Axial Attention DeNoise ResNet). The network is framed by the U-net structure. The encoder and decoder are incorporated with the proposed 3D axial attention mechanism and residual dense block. Each layer of the residual dense block can directly access the features of the previous layer, which More >

  • Open Access

    ARTICLE

    Development of a Novel Noise Reduction Algorithm for Smart Checkout RFID System in Retail Stores

    Shazielya Shamsul1, Mohammed A. H. Ali1,2,*, Salwa Hanim Abdul-Rashid1,2, Atef M. Ghaleb3, Fahad M. Alqahtani4

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 1277-1304, 2024, DOI:10.32604/cmc.2024.049257

    Abstract This paper presents a smart checkout system designed to mitigate the issues of noise and errors present in the existing barcode and RFID-based systems used at retail stores’ checkout counters. This is achieved by integrating a novel AI algorithm, called Improved Laser Simulator Logic (ILSL) into the RFID system. The enhanced RFID system was able to improve the accuracy of item identification, reduce noise interference, and streamline the overall checkout process. The potential of the system for noise detection and elimination was initially investigated through a simulation study using MATLAB and ILSL algorithm. Subsequently, it More >

  • Open Access

    ARTICLE

    FFRA: A Fine-Grained Function-Level Framework to Reduce the Attack Surface

    Xingxing Zhang1, Liang Liu1,*, Yu Fan1, Qian Zhou2

    Computer Systems Science and Engineering, Vol.48, No.4, pp. 969-987, 2024, DOI:10.32604/csse.2024.046615

    Abstract System calls are essential interfaces that enable applications to access and utilize the operating system’s services and resources. Attackers frequently exploit application’s vulnerabilities and misuse system calls to execute malicious code, aiming to elevate privileges and so on. Consequently, restricting the misuse of system calls becomes a crucial measure in ensuring system security. It is an effective method known as reducing the attack surface. Existing attack surface reduction techniques construct a global whitelist of system calls for the entire lifetime of the application, which is coarse-grained. In this paper, we propose a Fine-grained Function-level framework… More >

  • Open Access

    ARTICLE

    Scientific Elegance in NIDS: Unveiling Cardinality Reduction, Box-Cox Transformation, and ADASYN for Enhanced Intrusion Detection

    Amerah Alabrah*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 3897-3912, 2024, DOI:10.32604/cmc.2024.048528

    Abstract The emergence of digital networks and the wide adoption of information on internet platforms have given rise to threats against users’ private information. Many intruders actively seek such private data either for sale or other inappropriate purposes. Similarly, national and international organizations have country-level and company-level private information that could be accessed by different network attacks. Therefore, the need for a Network Intruder Detection System (NIDS) becomes essential for protecting these networks and organizations. In the evolution of NIDS, Artificial Intelligence (AI) assisted tools and methods have been widely adopted to provide effective solutions. However,… More >

  • Open Access

    ARTICLE

    A Power Data Anomaly Detection Model Based on Deep Learning with Adaptive Feature Fusion

    Xiu Liu, Liang Gu*, Xin Gong, Long An, Xurui Gao, Juying Wu

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4045-4061, 2024, DOI:10.32604/cmc.2024.048442

    Abstract With the popularisation of intelligent power, power devices have different shapes, numbers and specifications. This means that the power data has distributional variability, the model learning process cannot achieve sufficient extraction of data features, which seriously affects the accuracy and performance of anomaly detection. Therefore, this paper proposes a deep learning-based anomaly detection model for power data, which integrates a data alignment enhancement technique based on random sampling and an adaptive feature fusion method leveraging dimension reduction. Aiming at the distribution variability of power data, this paper developed a sliding window-based data adjustment method for… More >

  • Open Access

    ARTICLE

    Attribute Reduction of Hybrid Decision Information Systems Based on Fuzzy Conditional Information Entropy

    Xiaoqin Ma1,2, Jun Wang1, Wenchang Yu1, Qinli Zhang1,2,*

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2063-2083, 2024, DOI:10.32604/cmc.2024.049147

    Abstract The presence of numerous uncertainties in hybrid decision information systems (HDISs) renders attribute reduction a formidable task. Currently available attribute reduction algorithms, including those based on Pawlak attribute importance, Skowron discernibility matrix, and information entropy, struggle to effectively manages multiple uncertainties simultaneously in HDISs like the precise measurement of disparities between nominal attribute values, and attributes with fuzzy boundaries and abnormal values. In order to address the aforementioned issues, this paper delves into the study of attribute reduction within HDISs. First of all, a novel metric based on the decision attribute is introduced to solve… More >

Displaying 1-10 on page 1 of 196. Per Page