Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (44)
  • Open Access

    ARTICLE

    Geometrically Nonlinear Analyses of Isotropic and Laminated Shells by a Hierarchical Quadrature Element Method

    Yingying Lan, Bo Liu*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2026.075706 - 29 January 2026

    Abstract In this work, the Hierarchical Quadrature Element Method (HQEM) formulation of geometrically exact shells is proposed and applied for geometrically nonlinear analyses of both isotropic and laminated shells. The stress resultant formulation is developed within the HQEM framework, consequently significantly simplifying the computations of residual force and stiffness matrix. The present formulation inherently avoids shear and membrane locking, benefiting from its high-order approximation property. Furthermore, HQEM’s independent nodal distribution capability conveniently supports local p-refinement and flexibly facilitates mesh generation in various structural configurations through the combination of quadrilateral and triangular elements. Remarkably, in lateral buckling… More >

  • Open Access

    ARTICLE

    Superpixel-Aware Transformer with Attention-Guided Boundary Refinement for Salient Object Detection

    Burhan Baraklı1,*, Can Yüzkollar2, Tuğrul Taşçı3, İbrahim Yıldırım2

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.074292 - 29 January 2026

    Abstract Salient object detection (SOD) models struggle to simultaneously preserve global structure, maintain sharp object boundaries, and sustain computational efficiency in complex scenes. In this study, we propose SPSALNet, a task-driven two-stage (macro–micro) architecture that restructures the SOD process around superpixel representations. In the proposed approach, a “split-and-enhance” principle, introduced to our knowledge for the first time in the SOD literature, hierarchically classifies superpixels and then applies targeted refinement only to ambiguous or error-prone regions. At the macro stage, the image is partitioned into content-adaptive superpixel regions, and each superpixel is represented by a high-dimensional region-level… More >

  • Open Access

    ARTICLE

    LP-YOLO: Enhanced Smoke and Fire Detection via Self-Attention and Feature Pyramid Integration

    Qing Long1, Bing Yi2, Haiqiao Liu3,*, Zhiling Peng1, Xiang Liu1

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072058 - 12 January 2026

    Abstract Accurate detection of smoke and fire sources is critical for early fire warning and environmental monitoring. However, conventional detection approaches are highly susceptible to noise, illumination variations, and complex environmental conditions, which often reduce detection accuracy and real-time performance. To address these limitations, we propose Lightweight and Precise YOLO (LP-YOLO), a high-precision detection framework that integrates a self-attention mechanism with a feature pyramid, built upon YOLOv8. First, to overcome the restricted receptive field and parameter redundancy of conventional Convolutional Neural Networks (CNNs), we design an enhanced backbone based on Wavelet Convolutions (WTConv), which expands the… More >

  • Open Access

    ARTICLE

    Deep Retraining Approach for Category-Specific 3D Reconstruction Models from a Single 2D Image

    Nour El Houda Kaiber1, Tahar Mekhaznia1, Akram Bennour1,*, Mohammed Al-Sarem2,3,*, Zakaria Lakhdara4, Fahad Ghaban2, Mohammad Nassef5,6

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.070337 - 12 January 2026

    Abstract The generation of high-quality 3D models from single 2D images remains challenging in terms of accuracy and completeness. Deep learning has emerged as a promising solution, offering new avenues for improvements. However, building models from scratch is computationally expensive and requires large datasets. This paper presents a transfer-learning-based approach for category-specific 3D reconstruction from a single 2D image. The core idea is to fine-tune a pre-trained model on specific object categories using new, unseen data, resulting in specialized versions of the model that are better adapted to reconstruct particular objects. The proposed approach utilizes a… More >

  • Open Access

    ARTICLE

    FENet: Underwater Image Enhancement via Frequency Domain Enhancement and Edge-Guided Refinement

    Xinwei Zhu, Jianxun Zhang*, Huan Zeng

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-25, 2026, DOI:10.32604/cmc.2025.068578 - 09 December 2025

    Abstract Underwater images often affect the effectiveness of underwater visual tasks due to problems such as light scattering, color distortion, and detail blurring, limiting their application performance. Existing underwater image enhancement methods, although they can improve the image quality to some extent, often lead to problems such as detail loss and edge blurring. To address these problems, we propose FENet, an efficient underwater image enhancement method. FENet first obtains three different scales of images by image downsampling and then transforms them into the frequency domain to extract the low-frequency and high-frequency spectra, respectively. Then, a distance… More >

  • Open Access

    ARTICLE

    GFL-SAR: Graph Federated Collaborative Learning Framework Based on Structural Amplification and Attention Refinement

    Hefei Wang, Ruichun Gu*, Jingyu Wang, Xiaolin Zhang, Hui Wei

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-20, 2026, DOI:10.32604/cmc.2025.069251 - 10 November 2025

    Abstract Graph Federated Learning (GFL) has shown great potential in privacy protection and distributed intelligence through distributed collaborative training of graph-structured data without sharing raw information. However, existing GFL approaches often lack the capability for comprehensive feature extraction and adaptive optimization, particularly in non-independent and identically distributed (NON-IID) scenarios where balancing global structural understanding and local node-level detail remains a challenge. To this end, this paper proposes a novel framework called GFL-SAR (Graph Federated Collaborative Learning Framework Based on Structural Amplification and Attention Refinement), which enhances the representation learning capability of graph data through a dual-branch… More >

  • Open Access

    PROCEEDINGS

    Development of the FractureX Platform Based on FEALPy and Its Application in Brittle Fracture Simulation

    Tian Tian1, Huayi Wei2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.4, pp. 1-2, 2025, DOI:10.32604/icces.2025.011175

    Abstract Brittle fracture is a critical failure mode in structural materials, and accurately simulating its evolution is essential for engineering design, material performance evaluation, and failure prediction. Traditional numerical methods, however, face significant challenges when dealing with higher-order fracture models and complex fracture behaviors. To overcome these challenges, this study proposes an innovative simulation framework based on higher-order finite element methods and adaptive mesh refinement, effectively balancing computational efficiency and simulation accuracy.
    The research first develops a higher-order finite element method for the continuum damage fracture phase-field model. By incorporating higher-order finite element techniques, the proposed method… More >

  • Open Access

    ARTICLE

    A Simple and Robust Mesh Refinement Implementation in Abaqus for Phase Field Modelling of Brittle Fracture

    Anshul Pandey, Sachin Kumar*

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 3251-3286, 2025, DOI:10.32604/cmes.2025.067858 - 30 September 2025

    Abstract The phase field model can coherently address the relatively complex fracture phenomenon, such as crack nucleation, branching, deflection, etc. The model has been extensively implemented in the finite element package Abaqus to solve brittle fracture problems in recent studies. However, accurate numerical analysis typically requires fine meshes to model the evolving crack path effectively. A broad region must be discretized without prior knowledge of the crack path, further augmenting the computational expenses. In this proposed work, we present an automated framework utilizing a posteriori error-indicator (MISESERI) to demarcate and sufficiently refine the mesh along the… More >

  • Open Access

    ARTICLE

    Enhancing Hierarchical Task Network Planning through Ant Colony Optimization in Refinement Process

    Mohamed Elkawkagy1, Ibrahim A. Elgendy2,*, Ammar Muthanna3,4, Reem Ibrahim Alkanhel5, Heba Elbeh1

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 393-415, 2025, DOI:10.32604/cmc.2025.063766 - 09 June 2025

    Abstract Hierarchical Task Network (HTN) planning is a powerful technique in artificial intelligence for handling complex problems by decomposing them into hierarchical task structures. However, achieving optimal solutions in HTN planning remains a challenge, especially in scenarios where traditional search algorithms struggle to navigate the vast solution space efficiently. This research proposes a novel technique to enhance HTN planning by integrating the Ant Colony Optimization (ACO) algorithm into the refinement process. The Ant System algorithm, inspired by the foraging behavior of ants, is well-suited for addressing optimization problems by efficiently exploring solution spaces. By incorporating ACO… More >

  • Open Access

    ARTICLE

    Skeleton-Based Action Recognition Using Graph Convolutional Network with Pose Correction and Channel Topology Refinement

    Yuxin Gao1, Xiaodong Duan2,3, Qiguo Dai2,3,*

    CMC-Computers, Materials & Continua, Vol.83, No.1, pp. 701-718, 2025, DOI:10.32604/cmc.2025.060137 - 26 March 2025

    Abstract Graph convolutional network (GCN) as an essential tool in human action recognition tasks have achieved excellent performance in previous studies. However, most current skeleton-based action recognition using GCN methods use a shared topology, which cannot flexibly adapt to the diverse correlations between joints under different motion features. The video-shooting angle or the occlusion of the body parts may bring about errors when extracting the human pose coordinates with estimation algorithms. In this work, we propose a novel graph convolutional learning framework, called PCCTR-GCN, which integrates pose correction and channel topology refinement for skeleton-based human action… More >

Displaying 1-10 on page 1 of 44. Per Page