Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (31)
  • Open Access

    ARTICLE

    Peridynamic Modeling and Simulation of Ice Craters By Impact

    Ying Song1,2, Jiale Yan1,2, Shaofan Li2,*, Zhuang Kang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.121, No.2, pp. 465-492, 2019, DOI:10.32604/cmes.2019.07190

    Abstract In the present work, a state-based peridynamics with adaptive particle refinement is proposed to simulate water ice crater formation due to impact loads. A modified Drucker-Prager constitutive model was adopted to model ice and was implemented in the state-based peridynamic equations to analyze the elastic-plastic deformation of ice. In simulations, we use the fracture toughness failure criterion in peridynamics to simulate the quasi-brittle failure of ice. An adaptive particle refinement method in peridynamics was proposed to improve computational efficiency. The results obtained using the peridynamic model were compared with the experiments in previous literatures. It was found that the peridynamic… More >

  • Open Access

    ARTICLE

    Two-dimensional Numerical Estimation of Stress Intensity Factors and Crack Propagation in Linear Elastic Analysis

    Abdulnaser M. Alshoaibi1,2, M. S. A. Hadi2, A. K. Ariffin2

    Structural Durability & Health Monitoring, Vol.3, No.1, pp. 15-28, 2007, DOI:10.3970/sdhm.2007.003.015

    Abstract An adaptive finite element method is employed to analyze two-dimensional linear elastic fracture problems. The mesh is generated by the advancing front method and the norm stress error is taken as a posteriori error estimator for the h-type adaptive refinement. The stress intensity factors are estimated by a displacement extrapolation technique. The near crack tip displacements used are obtained from specific nodes of natural six-noded quarter-point elements which are generated around the crack tip defined by the user. The crack growth and its direction are determined by the calculated stress intensity factors as the maximum circumference theory is also been… More >

  • Open Access

    ARTICLE

    Reliable Fracture Analysis of OF 2-D Crack Problems Using NI-MVCCI Technique

    G.S. Palani1, Nagesh R. Iyer1, B. Dattaguru2

    Structural Durability & Health Monitoring, Vol.1, No.2, pp. 107-120, 2005, DOI:10.3970/sdhm.2005.001.107

    Abstract A posteriori error estimation and adaptive refinement technique for 2-D/3-D crack problems is the state-of-the-art. In this paper a new a posteriori error estimator based on strain energy release rate (SERR) or stress intensity factor (SIF) at the crack tip region has been proposed and used along with the stress based error estimator for reliable fracture analysis of 2-D crack problems. The proposed a posteriori error estimator is called the K-S error estimator. Further, h-adaptive mesh refinement strategy which can be used with K-S error estimator has been proposed for fracture analysis of 2-D crack problems. The performance of the… More >

  • Open Access

    ABSTRACT

    Further Investigation of An Adaptive Three-dimensional Mesh Refinement Method with a Central Vortex Velocity Field

    Zhenquan Li1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.3, No.4, pp. 251-256, 2007, DOI:10.3970/icces.2007.003.251

    Abstract An adaptive three-dimensional mesh refinement method based on the law of mass conservation has been introduced and tested using some analytical velocity fields as accurate in identifying singular point, asymptotic plane and drawing closed streamlines. This paper further investigates the adaptive mesh refinement method using a velocity field that is due to a uniform strain and a point vortex. Similar results have been obtained. More >

  • Open Access

    ARTICLE

    OpenIFEM: A High Performance Modular Open-Source Software of the Immersed Finite Element Method for Fluid-Structure Interactions

    Jie Cheng1, Feimi Yu1, Lucy T. Zhang1, *

    CMES-Computer Modeling in Engineering & Sciences, Vol.119, No.1, pp. 91-124, 2019, DOI:10.32604/cmes.2019.04318

    Abstract We present a high performance modularly-built open-source software - OpenIFEM. OpenIFEM is a C++ implementation of the modified immersed finite element method (mIFEM) to solve fluid-structure interaction (FSI) problems. This software is modularly built to perform multiple tasks including fluid dynamics (incompressible and slightly compressible fluid models), linear and nonlinear solid mechanics, and fully coupled fluid-structure interactions. Most of open-source software packages are restricted to certain discretization methods; some are under-tested, under-documented, and lack modularity as well as extensibility. OpenIFEM is designed and built to include a set of generic classes for users to adapt so that any fluid and… More >

  • Open Access

    ARTICLE

    Structural Refinement of Titanium-Aluminum-Niobium Alloy for Biomedical Applications

    Joaquín E. González-Hernández1, Jorge M. Cubero-Sesin1,2*, Elena Ulate-Kolitsky1, Priscilla Navarro1, Stephen Petretti1, Zenji Horita3,4

    Journal of Renewable Materials, Vol.5, No.3-4, pp. 300-306, 2017, DOI:10.7569/JRM.2017.634120

    Abstract In this work, a modification of the microstructure of a commercial Ti-6Al-7Nb alloy was accomplished by high-pressure torsion (HPT) at room temperature, to produce a bulk nanostructure on discs of 10 mm diameter and ~0.8 mm thickness. The metallographic analyses of the discs were performed by optical microscopy and scanning electron microscopy with energy dispersive spectroscopy. The results confirmed the presence of aluminum (Al) and niobium (Nb) as the sole alloying elements, promoting a duplex (α + β) titanium (Ti) microstructure prior to HPT processing. After HPT processing, nanostructure refinement was attained, reflected in the X-ray diffraction profiles as broadening… More >

  • Open Access

    ARTICLE

    A DMLPG Refinement Technique for 2D and 3D Potential Problems

    Annamaria Mazzia1, Giorgio Pini1, Flavio Sartoretto2

    CMES-Computer Modeling in Engineering & Sciences, Vol.108, No.4, pp. 239-262, 2015, DOI:10.3970/cmes.2015.108.239

    Abstract Meshless Local Petrov Galerkin (MLPG) methods are pure meshless techniques for solving Partial Differential Equations (PDE). MLPG techniques are nowadays used for solving a huge number of complex, real–life problems. While MLPG aims to approximate the solution of a given differential problem, its “dual” Direct MLPG (DMLPG) technique relies upon approximating linear functionals. Assume adaptive methods are to be implemented. When using a mesh–based method, inserting and/or deleting a node implies complex adjustment of connections. Meshless methods are more apt to implement adaptivity, since they does not require such adjustments. Nevertheless, ad–hoc insertion and/or deletion algorithms must be devised, in… More >

  • Open Access

    ARTICLE

    MLPG Refinement Techniques for 2D and 3D Diffusion Problems

    Annamaria Mazzia1, Giorgio Pini1, Flavio Sartoretto2

    CMES-Computer Modeling in Engineering & Sciences, Vol.102, No.6, pp. 475-497, 2014, DOI:10.3970/cmes.2014.102.475

    Abstract Meshless Local Petrov Galerkin (MLPG) methods are pure meshless techniques for solving Partial Differential Equations. One of pure meshless methods main applications is for implementing Adaptive Discretization Techniques. In this paper, we describe our fresh node–wise refinement technique, based upon estimations of the “local” Total Variation of the approximating function. We numerically analyze the accuracy and efficiency of our MLPG–based refinement. Solutions to test Poisson problems are approximated, which undergo large variations inside small portions of the domain. We show that 2D problems can be accurately solved. The gain in accuracy with respect to uniform discretizations is shown to be… More >

  • Open Access

    ARTICLE

    Novel Graph-based Adaptive Triangular Mesh Refinement for Finite-volume Discretizations

    Sanderson L. Gonzaga de Oliveira1, Mauricio Kischinhevsky2, João Manuel R. S. Tavares3

    CMES-Computer Modeling in Engineering & Sciences, Vol.95, No.2, pp. 119-141, 2013, DOI:10.3970/cmes.2013.095.119

    Abstract A novel graph-based adaptive mesh refinement technique for triangular finite-volume discretizations in order to solve second-order partial differential equations is described. Adaptive refined meshes are built in order to solve timedependent problems aiming low computational costs. In the approach proposed, flexibility to link and traverse nodes among neighbors in different levels of refinement is admitted; and volumes are refined using an approach that allows straightforward and strictly local update of the data structure. In addition, linear equation system solvers based on the minimization of functionals can be easily used; specifically, the Conjugate Gradient Method. Numerical and analytical tests were carried… More >

  • Open Access

    ARTICLE

    Remeshing and Refining with Moving Finite Elements. Application to Nonlinear Wave Problems

    A. Wacher1, D. Givoli2

    CMES-Computer Modeling in Engineering & Sciences, Vol.15, No.3, pp. 147-164, 2006, DOI:10.3970/cmes.2006.015.147

    Abstract The recently proposed String Gradient Weighted Moving Finite Element (SGWMFE) method is extended to include remeshing and refining. The method simultaneously determines, at each time step, the solution of the governing partial differential equations and an optimal location of the finite element nodes. It has previously been applied to the nonlinear time-dependent two-dimensional shallow water equations, under the demanding conditions of large Coriolis forces, inducing large mesh and field rotation. Such effects are of major importance in geophysical fluid dynamics applications. Two deficiencies of the original SGWMFE method are (1) possible tangling of the mesh which causes the method's failure,… More >

Displaying 11-20 on page 2 of 31. Per Page