Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (241)
  • Open Access

    ARTICLE

    Actor–Critic Trajectory Controller with Optimal Design for Nonlinear Robotic Systems

    Nien-Tsu Hu1,*, Hsiang-Tung Kao1, Chin-Sheng Chen1, Shih-Hao Chang2

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.074993 - 10 February 2026

    Abstract Trajectory tracking for nonlinear robotic systems remains a fundamental yet challenging problem in control engineering, particularly when both precision and efficiency must be ensured. Conventional control methods are often effective for stabilization but may not directly optimize long-term performance. To address this limitation, this study develops an integrated framework that combines optimal control principles with reinforcement learning for a single-link robotic manipulator. The proposed scheme adopts an actor–critic structure, where the critic network approximates the value function associated with the Hamilton–Jacobi–Bellman equation, and the actor network generates near-optimal control signals in real time. This dual… More >

  • Open Access

    REVIEW

    A State-of-the-Art Survey of Adversarial Reinforcement Learning for IoT Intrusion Detection

    Qasem Abu Al-Haija1,*, Shahad Al Tamimi2

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.073540 - 10 February 2026

    Abstract Adversarial Reinforcement Learning (ARL) models for intelligent devices and Network Intrusion Detection Systems (NIDS) improve system resilience against sophisticated cyber-attacks. As a core component of ARL, Adversarial Training (AT) enables NIDS agents to discover and prevent new attack paths by exposing them to competing examples, thereby increasing detection accuracy, reducing False Positives (FPs), and enhancing network security. To develop robust decision-making capabilities for real-world network disruptions and hostile activity, NIDS agents are trained in adversarial scenarios to monitor the current state and notify management of any abnormal or malicious activity. The accuracy and timeliness of… More >

  • Open Access

    ARTICLE

    Segment-Conditioned Latent-Intent Framework for Cooperative Multi-UAV Search

    Gang Hou1,#, Aifeng Liu1,#, Tao Zhao1, Wenyuan Wei2, Bo Li1, Jiancheng Liu3,*, Siwen Wei4,5,*

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2026.073202 - 10 February 2026

    Abstract Cooperative multi-UAV search requires jointly optimizing wide-area coverage, rapid target discovery, and endurance under sensing and motion constraints. Resolving this coupling enables scalable coordination with high data efficiency and mission reliability. We formulate this problem as a discounted Markov decision process on an occupancy grid with a cellwise Bayesian belief update, yielding a Markov state that couples agent poses with a probabilistic target field. On this belief–MDP we introduce a segment-conditioned latent-intent framework, in which a discrete intent head selects a latent skill every K steps and an intra-segment GRU policy generates per-step control conditioned on More >

  • Open Access

    ARTICLE

    LLM-Powered Multimodal Reasoning for Fake News Detection

    Md. Ahsan Habib1, Md. Anwar Hussen Wadud2, M. F. Mridha3,*, Md. Jakir Hossen4,*

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.070235 - 10 February 2026

    Abstract The problem of fake news detection (FND) is becoming increasingly important in the field of natural language processing (NLP) because of the rapid dissemination of misleading information on the web. Large language models (LLMs) such as GPT-4. Zero excels in natural language understanding tasks but can still struggle to distinguish between fact and fiction, particularly when applied in the wild. However, a key challenge of existing FND methods is that they only consider unimodal data (e.g., images), while more detailed multimodal data (e.g., user behaviour, temporal dynamics) is neglected, and the latter is crucial for… More >

  • Open Access

    ARTICLE

    A Hybrid Approach to Software Testing Efficiency: Stacked Ensembles and Deep Q-Learning for Test Case Prioritization and Ranking

    Anis Zarrad1, Thomas Armstrong2, Jaber Jemai3,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072768 - 12 January 2026

    Abstract Test case prioritization and ranking play a crucial role in software testing by improving fault detection efficiency and ensuring software reliability. While prioritization selects the most relevant test cases for optimal coverage, ranking further refines their execution order to detect critical faults earlier. This study investigates machine learning techniques to enhance both prioritization and ranking, contributing to more effective and efficient testing processes. We first employ advanced feature engineering alongside ensemble models, including Gradient Boosted, Support Vector Machines, Random Forests, and Naive Bayes classifiers to optimize test case prioritization, achieving an accuracy score of 0.98847More >

  • Open Access

    ARTICLE

    Research on UAV–MEC Cooperative Scheduling Algorithms Based on Multi-Agent Deep Reinforcement Learning

    Yonghua Huo1,2, Ying Liu1,*, Anni Jiang3, Yang Yang3

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072681 - 12 January 2026

    Abstract With the advent of sixth-generation mobile communications (6G), space–air–ground integrated networks have become mainstream. This paper focuses on collaborative scheduling for mobile edge computing (MEC) under a three-tier heterogeneous architecture composed of mobile devices, unmanned aerial vehicles (UAVs), and macro base stations (BSs). This scenario typically faces fast channel fading, dynamic computational loads, and energy constraints, whereas classical queuing-theoretic or convex-optimization approaches struggle to yield robust solutions in highly dynamic settings. To address this issue, we formulate a multi-agent Markov decision process (MDP) for an air–ground-fused MEC system, unify link selection, bandwidth/power allocation, and task… More >

  • Open Access

    ARTICLE

    DRL-Based Task Scheduling and Trajectory Control for UAV-Assisted MEC Systems

    Sai Xu1,*, Jun Liu1,*, Shengyu Huang1, Zhi Li2

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.071865 - 12 January 2026

    Abstract In scenarios where ground-based cloud computing infrastructure is unavailable, unmanned aerial vehicles (UAVs) act as mobile edge computing (MEC) servers to provide on-demand computation services for ground terminals. To address the challenge of jointly optimizing task scheduling and UAV trajectory under limited resources and high mobility of UAVs, this paper presents PER-MATD3, a multi-agent deep reinforcement learning algorithm with prioritized experience replay (PER) into the Centralized Training with Decentralized Execution (CTDE) framework. Specifically, PER-MATD3 enables each agent to learn a decentralized policy using only local observations during execution, while leveraging a shared replay buffer with More >

  • Open Access

    ARTICLE

    AquaTree: Deep Reinforcement Learning-Driven Monte Carlo Tree Search for Underwater Image Enhancement

    Chao Li1,3,#, Jianing Wang1,3,#, Caichang Ding2,*, Zhiwei Ye1,3

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.071242 - 12 January 2026

    Abstract Underwater images frequently suffer from chromatic distortion, blurred details, and low contrast, posing significant challenges for enhancement. This paper introduces AquaTree, a novel underwater image enhancement (UIE) method that reformulates the task as a Markov Decision Process (MDP) through the integration of Monte Carlo Tree Search (MCTS) and deep reinforcement learning (DRL). The framework employs an action space of 25 enhancement operators, strategically grouped for basic attribute adjustment, color component balance, correction, and deblurring. Exploration within MCTS is guided by a dual-branch convolutional network, enabling intelligent sequential operator selection. Our core contributions include: (1) a More >

  • Open Access

    ARTICLE

    Beyond Wi-Fi 7: Enhanced Decentralized Wireless Local Area Networks with Federated Reinforcement Learning

    Rashid Ali1,*, Alaa Omran Almagrabi2,3

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.070224 - 12 January 2026

    Abstract Wi-Fi technology has evolved significantly since its introduction in 1997, advancing to Wi-Fi 6 as the latest standard, with Wi-Fi 7 currently under development. Despite these advancements, integrating machine learning into Wi-Fi networks remains challenging, especially in decentralized environments with multiple access points (mAPs). This paper is a short review that summarizes the potential applications of federated reinforcement learning (FRL) across eight key areas of Wi-Fi functionality, including channel access, link adaptation, beamforming, multi-user transmissions, channel bonding, multi-link operation, spatial reuse, and multi-basic servic set (multi-BSS) coordination. FRL is highlighted as a promising framework for More >

  • Open Access

    ARTICLE

    A Deep Reinforcement Learning-Based Partitioning Method for Power System Parallel Restoration

    Changcheng Li1,2, Weimeng Chang1,2, Dahai Zhang1,*, Jinghan He1

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.069389 - 27 December 2025

    Abstract Effective partitioning is crucial for enabling parallel restoration of power systems after blackouts. This paper proposes a novel partitioning method based on deep reinforcement learning. First, the partitioning decision process is formulated as a Markov decision process (MDP) model to maximize the modularity. Corresponding key partitioning constraints on parallel restoration are considered. Second, based on the partitioning objective and constraints, the reward function of the partitioning MDP model is set by adopting a relative deviation normalization scheme to reduce mutual interference between the reward and penalty in the reward function. The soft bonus scaling mechanism… More >

Displaying 1-10 on page 1 of 241. Per Page