Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (197)
  • Open Access

    REVIEW

    An Overview and Comparative Study of Traditional, Chaos-Based and Machine Learning Approaches in Pseudorandom Number Generation

    Issah Zabsonre Alhassan1,2,*, Gaddafi Abdul-Salaam1, Michael Asante1, Yaw Marfo Missah1, Alimatu Sadia Shirazu1

    Journal of Cyber Security, Vol.7, pp. 165-196, 2025, DOI:10.32604/jcs.2025.063529 - 07 July 2025

    Abstract Pseudorandom number generators (PRNGs) are foundational to modern cryptography, yet existing approaches face critical trade-offs between cryptographic security, computational efficiency, and adaptability to emerging threats. Traditional PRNGs (e.g., Mersenne Twister, LCG) remain widely used in low-security applications despite vulnerabilities to predictability attacks, while machine learning (ML)-driven and chaos-based alternatives struggle to balance statistical robustness with practical deployability. This study systematically evaluates traditional, chaos-based, and ML-driven PRNGs to identify design principles for next-generation systems capable of meeting the demands of high-security environment like blockchain and IoT. Using a framework that quantifies cryptographic robustness (via NIST SP… More >

  • Open Access

    ARTICLE

    Privacy Preserving Federated Anomaly Detection in IoT Edge Computing Using Bayesian Game Reinforcement Learning

    Fatima Asiri1, Wajdan Al Malwi1, Fahad Masood2, Mohammed S. Alshehri3, Tamara Zhukabayeva4, Syed Aziz Shah5, Jawad Ahmad6,*

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 3943-3960, 2025, DOI:10.32604/cmc.2025.066498 - 03 July 2025

    Abstract Edge computing (EC) combined with the Internet of Things (IoT) provides a scalable and efficient solution for smart homes. The rapid proliferation of IoT devices poses real-time data processing and security challenges. EC has become a transformative paradigm for addressing these challenges, particularly in intrusion detection and anomaly mitigation. The widespread connectivity of IoT edge networks has exposed them to various security threats, necessitating robust strategies to detect malicious activities. This research presents a privacy-preserving federated anomaly detection framework combined with Bayesian game theory (BGT) and double deep Q-learning (DDQL). The proposed framework integrates BGT… More >

  • Open Access

    ARTICLE

    DRL-AMIR: Intelligent Flow Scheduling for Software-Defined Zero Trust Networks

    Wenlong Ke1,2,*, Zilong Li1, Peiyu Chen1, Benfeng Chen1, Jinglin Lv1, Qiang Wang2, Ziyi Jia2, Shigen Shen1

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 3305-3319, 2025, DOI:10.32604/cmc.2025.065665 - 03 July 2025

    Abstract Zero Trust Network (ZTN) enhances network security through strict authentication and access control. However, in the ZTN, optimizing flow control to improve the quality of service is still facing challenges. Software Defined Network (SDN) provides solutions through centralized control and dynamic resource allocation, but the existing scheduling methods based on Deep Reinforcement Learning (DRL) are insufficient in terms of convergence speed and dynamic optimization capability. To solve these problems, this paper proposes DRL-AMIR, which is an efficient flow scheduling method for software defined ZTN. This method constructs a flow scheduling optimization model that comprehensively considers… More >

  • Open Access

    ARTICLE

    Improved PPO-Based Task Offloading Strategies for Smart Grids

    Qian Wang1, Ya Zhou1,2,*

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 3835-3856, 2025, DOI:10.32604/cmc.2025.065465 - 03 July 2025

    Abstract Edge computing has transformed smart grids by lowering latency, reducing network congestion, and enabling real-time decision-making. Nevertheless, devising an optimal task-offloading strategy remains challenging, as it must jointly minimise energy consumption and response time under fluctuating workloads and volatile network conditions. We cast the offloading problem as a Markov Decision Process (MDP) and solve it with Deep Reinforcement Learning (DRL). Specifically, we present a three-tier architecture—end devices, edge nodes, and a cloud server—and enhance Proximal Policy Optimization (PPO) to learn adaptive, energy-aware policies. A Convolutional Neural Network (CNN) extracts high-level features from system states, enabling More >

  • Open Access

    ARTICLE

    Research on Adaptive Reward Optimization Method for Robot Navigation in Complex Dynamic Environment

    Jie He, Dongmei Zhao, Tao Liu*, Qingfeng Zou, Jian’an Xie

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 2733-2749, 2025, DOI:10.32604/cmc.2025.065205 - 03 July 2025

    Abstract Robot navigation in complex crowd service scenarios, such as medical logistics and commercial guidance, requires a dynamic balance between safety and efficiency, while the traditional fixed reward mechanism lacks environmental adaptability and struggles to adapt to the variability of crowd density and pedestrian motion patterns. This paper proposes a navigation method that integrates spatiotemporal risk field modeling and adaptive reward optimization, aiming to improve the robot’s decision-making ability in diverse crowd scenarios through dynamic risk assessment and nonlinear weight adjustment. We construct a spatiotemporal risk field model based on a Gaussian kernel function by combining… More >

  • Open Access

    ARTICLE

    Pathfinder: Deep Reinforcement Learning-Based Scheduling for Multi-Robot Systems in Smart Factories with Mass Customization

    Chenxi Lyu1, Chen Dong1, Qiancheng Xiong1, Yuzhong Chen1, Qian Weng1,*, Zhenyi Chen2

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 3371-3391, 2025, DOI:10.32604/cmc.2025.065153 - 03 July 2025

    Abstract The rapid advancement of Industry 4.0 has revolutionized manufacturing, shifting production from centralized control to decentralized, intelligent systems. Smart factories are now expected to achieve high adaptability and resource efficiency, particularly in mass customization scenarios where production schedules must accommodate dynamic and personalized demands. To address the challenges of dynamic task allocation, uncertainty, and real-time decision-making, this paper proposes Pathfinder, a deep reinforcement learning-based scheduling framework. Pathfinder models scheduling data through three key matrices: execution time (the time required for a job to complete), completion time (the actual time at which a job is finished),… More >

  • Open Access

    ARTICLE

    Multi-Agent Reinforcement Learning for Moving Target Defense Temporal Decision-Making Approach Based on Stackelberg-FlipIt Games

    Rongbo Sun, Jinlong Fei*, Yuefei Zhu, Zhongyu Guo

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 3765-3786, 2025, DOI:10.32604/cmc.2025.064849 - 03 July 2025

    Abstract Moving Target Defense (MTD) necessitates scientifically effective decision-making methodologies for defensive technology implementation. While most MTD decision studies focus on accurately identifying optimal strategies, the issue of optimal defense timing remains underexplored. Current default approaches—periodic or overly frequent MTD triggers—lead to suboptimal trade-offs among system security, performance, and cost. The timing of MTD strategy activation critically impacts both defensive efficacy and operational overhead, yet existing frameworks inadequately address this temporal dimension. To bridge this gap, this paper proposes a Stackelberg-FlipIt game model that formalizes asymmetric cyber conflicts as alternating control over attack surfaces, thereby capturing More >

  • Open Access

    ARTICLE

    An Improved Multi-Actor Hybrid Attention Critic Algorithm for Cooperative Navigation in Urban Low-Altitude Logistics Environments

    Chao Li1,3,#, Quanzhi Feng1,3,#, Caichang Ding2,*, Zhiwei Ye1,3

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 3605-3621, 2025, DOI:10.32604/cmc.2025.063703 - 03 July 2025

    Abstract The increasing adoption of unmanned aerial vehicles (UAVs) in urban low-altitude logistics systems, particularly for time-sensitive applications like parcel delivery and supply distribution, necessitates sophisticated coordination mechanisms to optimize operational efficiency. However, the limited capability of UAVs to extract state-action information in complex environments poses significant challenges to achieving effective cooperation in dynamic and uncertain scenarios. To address this, we presents an Improved Multi-Agent Hybrid Attention Critic (IMAHAC) framework that advances multi-agent deep reinforcement learning (MADRL) through two key innovations. Firstly, a Temporal Difference Error and Time-based Prioritized Experience Replay (TT-PER) mechanism that dynamically adjusts… More >

  • Open Access

    ARTICLE

    Deep Q-Learning Driven Protocol for Enhanced Border Surveillance with Extended Wireless Sensor Network Lifespan

    Nimisha Rajput1,#, Amit Kumar1, Raghavendra Pal1,#, Nishu Gupta2,*, Mikko Uitto2, Jukka Mäkelä2

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.3, pp. 3839-3859, 2025, DOI:10.32604/cmes.2025.065903 - 30 June 2025

    Abstract Wireless Sensor Networks (WSNs) play a critical role in automated border surveillance systems, where continuous monitoring is essential. However, limited energy resources in sensor nodes lead to frequent network failures and reduced coverage over time. To address this issue, this paper presents an innovative energy-efficient protocol based on deep Q-learning (DQN), specifically developed to prolong the operational lifespan of WSNs used in border surveillance. By harnessing the adaptive power of DQN, the proposed protocol dynamically adjusts node activity and communication patterns. This approach ensures optimal energy usage while maintaining high coverage, connectivity, and data accuracy. More >

  • Open Access

    ARTICLE

    An Advantage Actor-Critic Approach for Energy-Conscious Scheduling in Flexible Job Shops

    Saurabh Sanjay Singh*, Rahul Joshi, Deepak Gupta

    Journal on Artificial Intelligence, Vol.7, pp. 177-203, 2025, DOI:10.32604/jai.2025.065078 - 30 June 2025

    Abstract This paper addresses the challenge of energy-conscious scheduling in modern manufacturing by formulating and solving the Energy-Conscious Flexible Job Shop Scheduling Problem. In this problem, each job has a fixed sequence of operations to be performed on parallel machines, and each operation can be assigned to any capable machine. The problem statement aims to schedule every job in a way that minimizes the total energy consumption of the job shop. The paper’s primary objective is to develop a reinforcement learning-based scheduling framework using the Advantage Actor-Critic algorithm to generate energy-efficient schedules that are computationally fast… More >

Displaying 1-10 on page 1 of 197. Per Page