Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (142)
  • Open Access


    Reinforcement Effect of Recycled CFRP on Cement-Based Composites: With a Comparison to Commercial Carbon Fiber Powder

    Hantao Huang, Zhifang Zhang*, Zhenhua Wu, Yao Liu

    Structural Durability & Health Monitoring, Vol.18, No.4, pp. 409-423, 2024, DOI:10.32604/sdhm.2024.048597

    Abstract In this paper, recycled carbon fiber reinforced polymer (CFRP) mixture (CFRP-M, including recycled carbon fiber and powder) and refined recycled CFRP fiber (CFRP-F, mostly recycled carbon fiber) were added to cement to study the influence of addition on the flexural strength, compressive strength, and fluidity of cement-based materials. The recycled CFRP were prepared by mechanically processing the prepreg scraps generated during the manufacture of CFRP products. For comparison, commercial carbon fiber powder was also added in cement and the performance was compared to that of addition of recycled CFRP. The hydration products and strengthening mechanism… More >

  • Open Access


    Dynamic Economic Scheduling with Self-Adaptive Uncertainty in Distribution Network Based on Deep Reinforcement Learning

    Guanfu Wang1, Yudie Sun1, Jinling Li2,3,*, Yu Jiang1, Chunhui Li1, Huanan Yu2,3, He Wang2,3, Shiqiang Li2,3

    Energy Engineering, Vol.121, No.6, pp. 1671-1695, 2024, DOI:10.32604/ee.2024.047794

    Abstract Traditional optimal scheduling methods are limited to accurate physical models and parameter settings, which are difficult to adapt to the uncertainty of source and load, and there are problems such as the inability to make dynamic decisions continuously. This paper proposed a dynamic economic scheduling method for distribution networks based on deep reinforcement learning. Firstly, the economic scheduling model of the new energy distribution network is established considering the action characteristics of micro-gas turbines, and the dynamic scheduling model based on deep reinforcement learning is constructed for the new energy distribution network system with a More >

  • Open Access


    Intelligent Power Grid Load Transferring Based on Safe Action-Correction Reinforcement Learning

    Fuju Zhou*, Li Li, Tengfei Jia, Yongchang Yin, Aixiang Shi, Shengrong Xu

    Energy Engineering, Vol.121, No.6, pp. 1697-1711, 2024, DOI:10.32604/ee.2024.047680

    Abstract When a line failure occurs in a power grid, a load transfer is implemented to reconfigure the network by changing the states of tie-switches and load demands. Computation speed is one of the major performance indicators in power grid load transfer, as a fast load transfer model can greatly reduce the economic loss of post-fault power grids. In this study, a reinforcement learning method is developed based on a deep deterministic policy gradient. The tedious training process of the reinforcement learning model can be conducted offline, so the model shows satisfactory performance in real-time operation, More >

  • Open Access


    Proactive Caching at the Wireless Edge: A Novel Predictive User Popularity-Aware Approach

    Yunye Wan1, Peng Chen2, Yunni Xia1,*, Yong Ma3, Dongge Zhu4, Xu Wang5, Hui Liu6, Weiling Li7, Xianhua Niu2, Lei Xu8, Yumin Dong9

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1997-2017, 2024, DOI:10.32604/cmes.2024.048723

    Abstract Mobile Edge Computing (MEC) is a promising technology that provides on-demand computing and efficient storage services as close to end users as possible. In an MEC environment, servers are deployed closer to mobile terminals to exploit storage infrastructure, improve content delivery efficiency, and enhance user experience. However, due to the limited capacity of edge servers, it remains a significant challenge to meet the changing, time-varying, and customized needs for highly diversified content of users. Recently, techniques for caching content at the edge are becoming popular for addressing the above challenges. It is capable of filling… More >

  • Open Access


    Performance Evaluation of Multi-Agent Reinforcement Learning Algorithms

    Abdulghani M. Abdulghani, Mokhles M. Abdulghani, Wilbur L. Walters, Khalid H. Abed*

    Intelligent Automation & Soft Computing, Vol.39, No.2, pp. 337-352, 2024, DOI:10.32604/iasc.2024.047017

    Abstract Multi-Agent Reinforcement Learning (MARL) has proven to be successful in cooperative assignments. MARL is used to investigate how autonomous agents with the same interests can connect and act in one team. MARL cooperation scenarios are explored in recreational cooperative augmented reality environments, as well as real-world scenarios in robotics. In this paper, we explore the realm of MARL and its potential applications in cooperative assignments. Our focus is on developing a multi-agent system that can collaborate to attack or defend against enemies and achieve victory with minimal damage. To accomplish this, we utilize the StarCraft… More >

  • Open Access


    Trading in Fast-Changing Markets with Meta-Reinforcement Learning

    Yutong Tian1, Minghan Gao2, Qiang Gao1,*, Xiao-Hong Peng3

    Intelligent Automation & Soft Computing, Vol.39, No.2, pp. 175-188, 2024, DOI:10.32604/iasc.2024.042762

    Abstract How to find an effective trading policy is still an open question mainly due to the nonlinear and non-stationary dynamics in a financial market. Deep reinforcement learning, which has recently been used to develop trading strategies by automatically extracting complex features from a large amount of data, is struggling to deal with fast-changing markets due to sample inefficiency. This paper applies the meta-reinforcement learning method to tackle the trading challenges faced by conventional reinforcement learning (RL) approaches in non-stationary markets for the first time. In our work, the history trading data is divided into multiple… More >

  • Open Access


    QoS Routing Optimization Based on Deep Reinforcement Learning in SDN

    Yu Song1, Xusheng Qian2, Nan Zhang3, Wei Wang2, Ao Xiong1,*

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 3007-3021, 2024, DOI:10.32604/cmc.2024.051217

    Abstract To enhance the efficiency and expediency of issuing e-licenses within the power sector, we must confront the challenge of managing the surging demand for data traffic. Within this realm, the network imposes stringent Quality of Service (QoS) requirements, revealing the inadequacies of traditional routing allocation mechanisms in accommodating such extensive data flows. In response to the imperative of handling a substantial influx of data requests promptly and alleviating the constraints of existing technologies and network congestion, we present an architecture for QoS routing optimization with in Software Defined Network (SDN), leveraging deep reinforcement learning. This… More >

  • Open Access


    Safety-Constrained Multi-Agent Reinforcement Learning for Power Quality Control in Distributed Renewable Energy Networks

    Yongjiang Zhao, Haoyi Zhong, Chang Cyoon Lim*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 449-471, 2024, DOI:10.32604/cmc.2024.048771

    Abstract This paper examines the difficulties of managing distributed power systems, notably due to the increasing use of renewable energy sources, and focuses on voltage control challenges exacerbated by their variable nature in modern power grids. To tackle the unique challenges of voltage control in distributed renewable energy networks, researchers are increasingly turning towards multi-agent reinforcement learning (MARL). However, MARL raises safety concerns due to the unpredictability in agent actions during their exploration phase. This unpredictability can lead to unsafe control measures. To mitigate these safety concerns in MARL-based voltage control, our study introduces a novel… More >

  • Open Access


    Reinforcement Learning Based Quantization Strategy Optimal Assignment Algorithm for Mixed Precision

    Yuejiao Wang, Zhong Ma*, Chaojie Yang, Yu Yang, Lu Wei

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 819-836, 2024, DOI:10.32604/cmc.2024.047108

    Abstract The quantization algorithm compresses the original network by reducing the numerical bit width of the model, which improves the computation speed. Because different layers have different redundancy and sensitivity to data bit width. Reducing the data bit width will result in a loss of accuracy. Therefore, it is difficult to determine the optimal bit width for different parts of the network with guaranteed accuracy. Mixed precision quantization can effectively reduce the amount of computation while keeping the model accuracy basically unchanged. In this paper, a hardware-aware mixed precision quantization strategy optimal assignment algorithm adapted to… More >

  • Open Access


    Double DQN Method For Botnet Traffic Detection System

    Yutao Hu1, Yuntao Zhao1,*, Yongxin Feng2, Xiangyu Ma1

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 509-530, 2024, DOI:10.32604/cmc.2024.042216

    Abstract In the face of the increasingly severe Botnet problem on the Internet, how to effectively detect Botnet traffic in real-time has become a critical problem. Although the existing deep Q network (DQN) algorithm in Deep reinforcement learning can solve the problem of real-time updating, its prediction results are always higher than the actual results. In Botnet traffic detection, although it performs well in the training set, the accuracy rate of predicting traffic is as high as%; however, in the test set, its accuracy has declined, and it is impossible to adjust its prediction strategy on… More >

Displaying 1-10 on page 1 of 142. Per Page