Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (185)
  • Open Access

    ARTICLE

    Dynamic Task Offloading Scheme for Edge Computing via Meta-Reinforcement Learning

    Jiajia Liu1,*, Peng Xie2, Wei Li2, Bo Tang2, Jianhua Liu2

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 2609-2635, 2025, DOI:10.32604/cmc.2024.058810 - 17 February 2025

    Abstract As an important complement to cloud computing, edge computing can effectively reduce the workload of the backbone network. To reduce latency and energy consumption of edge computing, deep learning is used to learn the task offloading strategies by interacting with the entities. In actual application scenarios, users of edge computing are always changing dynamically. However, the existing task offloading strategies cannot be applied to such dynamic scenarios. To solve this problem, we propose a novel dynamic task offloading framework for distributed edge computing, leveraging the potential of meta-reinforcement learning (MRL). Our approach formulates a multi-objective… More >

  • Open Access

    ARTICLE

    Improving Machine Translation Formality with Large Language Models

    Murun Yang1,*, Fuxue Li2

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 2061-2075, 2025, DOI:10.32604/cmc.2024.058248 - 17 February 2025

    Abstract Preserving formal style in neural machine translation (NMT) is essential, yet often overlooked as an optimization objective of the training processes. This oversight can lead to translations that, though accurate, lack formality. In this paper, we propose how to improve NMT formality with large language models (LLMs), which combines the style transfer and evaluation capabilities of an LLM and the high-quality translation generation ability of NMT models to improve NMT formality. The proposed method (namely INMTF) encompasses two approaches. The first involves a revision approach using an LLM to revise the NMT-generated translation, ensuring a… More >

  • Open Access

    ARTICLE

    Pushing the Boundaries of Starch Foams: Novel Laminar Composites with Paper Reinforcement

    Manisara Phiriyawirut*, Pukrapee Rodprasert, Peerapat Kulvorakulpitak, Ratiwan Cothsila, Nattarat Kengkla

    Journal of Renewable Materials, Vol.13, No.1, pp. 101-114, 2025, DOI:10.32604/jrm.2024.056830 - 20 January 2025

    Abstract This work explores the development of biodegradable laminar composite foams for cushioning applications. The focus lies on overcoming the inherent brittleness of starch foams by incorporating various paper types as reinforcement. Tapioca starch and glutinous starch were blended in varying ratios (100:0–0:100) to optimize the base material’s properties. The morphology, density, flexural strength, and impact strength of these starch blends were evaluated. The results revealed a trade-off between impact strength and density, with increasing glutinous starch content favoring impact resistance but also leading to higher density. The optimal ratio of tapioca to glutinous starch for… More > Graphic Abstract

    Pushing the Boundaries of Starch Foams: Novel Laminar Composites with Paper Reinforcement

  • Open Access

    ARTICLE

    Performance Evaluation of Damaged T-Beam Bridges with External Prestressing Reinforcement Based on Natural Frequencies

    Menghui Hao1, Shanshan Zhou1, Yongchao Han1, Zhanwei Zhu1, Qiang Yang2, Panxu Sun2,*, Jiajun Fan2

    Structural Durability & Health Monitoring, Vol.19, No.2, pp. 399-415, 2025, DOI:10.32604/sdhm.2024.056250 - 15 January 2025

    Abstract As an evaluation index, the natural frequency has the advantages of easy acquisition and quantitative evaluation. In this paper, the natural frequency is used to evaluate the performance of external cable reinforced bridges. Numerical examples show that compared with the natural frequencies of first-order modes, the natural frequencies of higher-order modes are more sensitive and can reflect the damage situation and external cable reinforcement effect of T-beam bridges. For damaged bridges, as the damage to the T-beam increases, the natural frequency value of the bridge gradually decreases. When the degree of local damage to the… More >

  • Open Access

    ARTICLE

    An Iterated Greedy Algorithm with Memory and Learning Mechanisms for the Distributed Permutation Flow Shop Scheduling Problem

    Binhui Wang, Hongfeng Wang*

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 371-388, 2025, DOI:10.32604/cmc.2024.058885 - 03 January 2025

    Abstract The distributed permutation flow shop scheduling problem (DPFSP) has received increasing attention in recent years. The iterated greedy algorithm (IGA) serves as a powerful optimizer for addressing such a problem because of its straightforward, single-solution evolution framework. However, a potential draw-back of IGA is the lack of utilization of historical information, which could lead to an imbalance between exploration and exploitation, especially in large-scale DPFSPs. As a consequence, this paper develops an IGA with memory and learning mechanisms (MLIGA) to efficiently solve the DPFSP targeted at the mini-mal makespan. In MLIGA, we incorporate a memory… More >

  • Open Access

    ARTICLE

    An Asynchronous Data Transmission Policy for Task Offloading in Edge-Computing Enabled Ultra-Dense IoT

    Dayong Wang1,*, Kamalrulnizam Bin Abu Bakar1, Babangida Isyaku2, Liping Lei3

    CMC-Computers, Materials & Continua, Vol.81, No.3, pp. 4465-4483, 2024, DOI:10.32604/cmc.2024.059616 - 19 December 2024

    Abstract In recent years, task offloading and its scheduling optimization have emerged as widely discussed and significant topics. The multi-objective optimization problems inherent in this domain, particularly those related to resource allocation, have been extensively investigated. However, existing studies predominantly focus on matching suitable computational resources for task offloading requests, often overlooking the optimization of the task data transmission process. This inefficiency in data transmission leads to delays in the arrival of task data at computational nodes within the edge network, resulting in increased service times due to elevated network transmission latencies and idle computational resources.… More >

  • Open Access

    ARTICLE

    SEF: A Smart and Energy-Aware Forwarding Strategy for NDN-Based Internet of Healthcare

    Naeem Ali Askar1,*, Adib Habbal1,*, Hassen Hamouda2, Abdullah Mohammad Alnajim3, Sheroz Khan4

    CMC-Computers, Materials & Continua, Vol.81, No.3, pp. 4625-4658, 2024, DOI:10.32604/cmc.2024.058607 - 19 December 2024

    Abstract Named Data Networking (NDN) has emerged as a promising communication paradigm, emphasizing content-centric access rather than location-based access. This model offers several advantages for Internet of Healthcare Things (IoHT) environments, including efficient content distribution, built-in security, and natural support for mobility and scalability. However, existing NDN-based IoHT systems face inefficiencies in their forwarding strategy, where identical Interest packets are forwarded across multiple nodes, causing broadcast storms, increased collisions, higher energy consumption, and delays. These issues negatively impact healthcare system performance, particularly for individuals with disabilities and chronic diseases requiring continuous monitoring. To address these challenges,… More >

  • Open Access

    ARTICLE

    Real-Time Implementation of Quadrotor UAV Control System Based on a Deep Reinforcement Learning Approach

    Taha Yacine Trad1,*, Kheireddine Choutri1, Mohand Lagha1, Souham Meshoul2, Fouad Khenfri3, Raouf Fareh4, Hadil Shaiba5

    CMC-Computers, Materials & Continua, Vol.81, No.3, pp. 4757-4786, 2024, DOI:10.32604/cmc.2024.055634 - 19 December 2024

    Abstract The popularity of quadrotor Unmanned Aerial Vehicles (UAVs) stems from their simple propulsion systems and structural design. However, their complex and nonlinear dynamic behavior presents a significant challenge for control, necessitating sophisticated algorithms to ensure stability and accuracy in flight. Various strategies have been explored by researchers and control engineers, with learning-based methods like reinforcement learning, deep learning, and neural networks showing promise in enhancing the robustness and adaptability of quadrotor control systems. This paper investigates a Reinforcement Learning (RL) approach for both high and low-level quadrotor control systems, focusing on attitude stabilization and position… More >

  • Open Access

    ARTICLE

    Enhanced Deep Reinforcement Learning Strategy for Energy Management in Plug-in Hybrid Electric Vehicles with Entropy Regularization and Prioritized Experience Replay

    Li Wang1,*, Xiaoyong Wang2

    Energy Engineering, Vol.121, No.12, pp. 3953-3979, 2024, DOI:10.32604/ee.2024.056705 - 22 November 2024

    Abstract Plug-in Hybrid Electric Vehicles (PHEVs) represent an innovative breed of transportation, harnessing diverse power sources for enhanced performance. Energy management strategies (EMSs) that coordinate and control different energy sources is a critical component of PHEV control technology, directly impacting overall vehicle performance. This study proposes an improved deep reinforcement learning (DRL)-based EMS that optimizes real-time energy allocation and coordinates the operation of multiple power sources. Conventional DRL algorithms struggle to effectively explore all possible state-action combinations within high-dimensional state and action spaces. They often fail to strike an optimal balance between exploration and exploitation, and… More >

  • Open Access

    ARTICLE

    Reinforcement Learning Model for Energy System Management to Ensure Energy Efficiency and Comfort in Buildings

    Inna Bilous1, Dmytro Biriukov1, Dmytro Karpenko2, Tatiana Eutukhova2, Oleksandr Novoseltsev2,*, Volodymyr Voloshchuk1

    Energy Engineering, Vol.121, No.12, pp. 3617-3634, 2024, DOI:10.32604/ee.2024.051684 - 22 November 2024

    Abstract This article focuses on the challenges of modeling energy supply systems for buildings, encompassing both methods and tools for simulating thermal regimes and engineering systems within buildings. Enhancing the comfort of living or working in buildings often necessitates increased consumption of energy and material, such as for thermal upgrades, which consequently incurs additional economic costs. It is crucial to acknowledge that such improvements do not always lead to a decrease in total pollutant emissions, considering emissions across all stages of production and usage of energy and materials aimed at boosting energy efficiency and comfort in… More > Graphic Abstract

    Reinforcement Learning Model for Energy System Management to Ensure Energy Efficiency and Comfort in Buildings

Displaying 11-20 on page 2 of 185. Per Page