Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (7)
  • Open Access

    ARTICLE

    Ergonomic Reliability Assessment of VDT System for Operation Design Based on Improved BPNN and HCR under Special Circumstances

    Xin Liu1, Zheng Liu2,*, Zhilin Huang1, Mingyu Ling1, Kangchao Lin1, Pengqing Chen1, Xiaomin Huang1, Yujia Zhai1

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.1, pp. 685-707, 2023, DOI:10.32604/cmes.2023.025058

    Abstract Ergonomic reliability plays a significant role in the safe operation of devices. With the spread of infectious diseases around the world, in work environments with high loads and high infection rates, medical staff work in a state of high self-protection. The use of visual display terminal (VDT) for medical equipment has undergone fundamental changes, and the traditional medical equipment human-machine interface design needs to be improved. After the completion of design and development, a VDT design enters the experimental testing stage, which has significant limitations for simulating the work of medical staff in the high-load and high-infection environments. The testing… More >

  • Open Access

    ARTICLE

    An Uncertainty Analysis and Reliability-Based Multidisciplinary Design Optimization Method Using Fourth-Moment Saddlepoint Approximation

    Yongqiang Guo1,2,*, Zhiyuan Lv3

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.3, pp. 1855-1870, 2023, DOI:10.32604/cmes.2022.022211

    Abstract In uncertainty analysis and reliability-based multidisciplinary design and optimization (RBMDO) of engineering structures, the saddlepoint approximation (SA) method can be utilized to enhance the accuracy and efficiency of reliability evaluation. However, the random variables involved in SA should be easy to handle. Additionally, the corresponding saddlepoint equation should not be complicated. Both of them limit the application of SA for engineering problems. The moment method can construct an approximate cumulative distribution function of the performance function based on the first few statistical moments. However, the traditional moment matching method is not very accurate generally. In order to take advantage of… More >

  • Open Access

    ARTICLE

    Availability Capacity Evaluation and Reliability Assessment of Integrated Systems Using Metaheuristic Algorithm

    A. Durgadevi*, N. Shanmugavadivoo

    Computer Systems Science and Engineering, Vol.44, No.3, pp. 1951-1971, 2023, DOI:10.32604/csse.2023.026810

    Abstract

    Contemporarily, the development of distributed generations (DGs) technologies is fetching more, and their deployment in power systems is becoming broad and diverse. Consequently, several glitches are found in the recent studies due to the inappropriate/inadequate penetrations. This work aims to improve the reliable operation of the power system employing reliability indices using a metaheuristic-based algorithm before and after DGs penetration with feeder system. The assessment procedure is carried out using MATLAB software and Modified Salp Swarm Algorithm (MSSA) that helps assess the Reliability indices of the proposed integrated IEEE RTS79 system for seven different configurations. This algorithm modifies two control… More >

  • Open Access

    ARTICLE

    Software Reliability Assessment Using Hybrid Neuro-Fuzzy Model

    Parul Gandhi1, Mohammad Zubair Khan2, Ravi Kumar Sharma3, Omar H. Alhazmi2, Surbhi Bhatia4,*, Chinmay Chakraborty5

    Computer Systems Science and Engineering, Vol.41, No.3, pp. 891-902, 2022, DOI:10.32604/csse.2022.019943

    Abstract Software reliability is the primary concern of software development organizations, and the exponentially increasing demand for reliable software requires modeling techniques to be developed in the present era. Small unnoticeable drifts in the software can culminate into a disaster. Early removal of these errors helps the organization improve and enhance the software’s reliability and save money, time, and effort. Many soft computing techniques are available to get solutions for critical problems but selecting the appropriate technique is a big challenge. This paper proposed an efficient algorithm that can be used for the prediction of software reliability. The proposed algorithm is… More >

  • Open Access

    ARTICLE

    Novel Kriging-Based Decomposed-Coordinated Approach for Estimating the Clearance Reliability of Assembled Structures

    Da Teng1, Yunwen Feng1,*, Cheng Lu1,2, Chengwei Fei2, Jiaqi Liu1, Xiaofeng Xue1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.129, No.2, pp. 1029-1049, 2021, DOI:10.32604/cmes.2021.016945

    Abstract Turbine blisks are assembled using blades, disks and casings. They can endure complex loads at a high temperature, high pressure and high speed. The safe operation of assembled structures depends on the reliability of each component. Monte Carlo (MC) simulation is commonly used to analyze structural reliability, but this method needs to run thousands of computations. In order to assess the clearance reliability of assembled structures in an efficient and precise manner, the novel Kriging-based decomposed-coordinated (DC) (DCNK) approach is proposed by integrating the DC strategy, the Kriging model and the importance sampling-based Markov chain (MCIS) technique. In this method,… More >

  • Open Access

    ARTICLE

    A Bayesian Updating Method for Non-Probabilistic Reliability Assessment of Structures with Performance Test Data

    Jiaqi He1, Yangjun Luo1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.125, No.2, pp. 777-800, 2020, DOI:10.32604/cmes.2020.010688

    Abstract For structures that only the predicted bounds of uncertainties are available, this study proposes a Bayesian method to logically evaluate the nonprobabilistic reliability of structures based on multi-ellipsoid convex model and performance test data. According to the given interval ranges of uncertainties, we determine the initial characteristic parameters of a multi-ellipsoid convex set. Moreover, to update the plausibility of characteristic parameters, a Bayesian network for the information fusion of prior uncertainty knowledge and subsequent performance test data is constructed. Then, an updated multi-ellipsoid set with the maximum likelihood of the performance test data can be achieved. The credible non-probabilistic reliability… More >

  • Open Access

    ARTICLE

    Seismic Reliability Assessment of Inelastic SDOF Systems Subjected to Near-Fault Ground Motions Considering Pulse Occurrence

    Jilei Zhou1,*, Chuansong Sun1, Xiangjun Dai1, Guohai Chen2

    Structural Durability & Health Monitoring, Vol.13, No.4, pp. 361-378, 2019, DOI:10.32604/sdhm.2019.05171

    Abstract The ground motions in the orientation corresponding to the strongest pulse energy impose more serious demand on structures than that of ordinary ground motions. Moreover, not all near-fault ground motion records present distinct pulses in the velocity time histories. In this paper, the parameterized stochastic model of near-fault ground motion with the strongest energy and pulse occurrence probability is suggested, and the Monte Carlo simulation (MSC) and subset simulation are utilized to calculate the first excursion probability of inelastic single-degree-of-freedom (SDOF) systems subjected to these types of near-fault ground motion models, respectively. Firstly, the influences of variation of stochastic pulse… More >

Displaying 1-10 on page 1 of 7. Per Page