Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (75)
  • Open Access

    ARTICLE

    Revolutionizing Tight Reservoir Production: A Novel Dual-Medium Unsteady Seepage Model for Optimizing Volumetrically Fractured Horizontal Wells

    Xinyu Zhao1,2,*, Mofeng Li2, Kai Yan2, Li Yin3

    Energy Engineering, Vol.120, No.12, pp. 2933-2949, 2023, DOI:10.32604/ee.2023.041580

    Abstract This study presents an avant-garde approach for predicting and optimizing production in tight reservoirs, employing a dual-medium unsteady seepage model specifically fashioned for volumetrically fractured horizontal wells. Traditional models often fail to fully capture the complex dynamics associated with these unconventional reservoirs. In a significant departure from these models, our approach incorporates an initiation pressure gradient and a discrete fracture seepage network, providing a more realistic representation of the seepage process. The model also integrates an enhanced fluid-solid interaction, which allows for a more comprehensive understanding of the fluid-structure interactions in the reservoir. This is achieved through the incorporation of… More >

  • Open Access

    ARTICLE

    A Feasibility Study of Using Geothermal Energy to Enhance Natural Gas Production from Offshore Gas Hydrate Reservoirs by CO2 Swapping

    Md Nahin Mahmood*, Boyun Guo

    Energy Engineering, Vol.120, No.12, pp. 2707-2720, 2023, DOI:10.32604/ee.2023.042996

    Abstract The energy industry faces a significant challenge in extracting natural gas from offshore natural gas hydrate (NGH) reservoirs, primarily due to the low productivity of wells and the high operational costs involved. The present study offers an assessment of the feasibility of utilizing geothermal energy to augment the production of natural gas from offshore gas hydrate reservoirs through the implementation of the methane-CO2 swapping technique. The present study expands the research scope of the authors beyond their previous publication, which exclusively examined the generation of methane from marine gas hydrates. Specifically, the current investigation explores the feasibility of utilizing the… More >

  • Open Access

    PROCEEDINGS

    Numerical Simulation of Multiphase Flow in Subsurface Reservoirs: Existing Challenges and New Treatments

    Shuyu Sun1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.2, pp. 1-2, 2023, DOI:10.32604/icces.2023.09671

    Abstract Two or multiple phases commonly occur as fluid mixture in petroleum industry, where oil, gas and water are often produced and transported together. As a result, petroleum reservoir engineers spent great efforts in the development and production of oil and gas reservoirs by conducting and interpolating the simulation of multiphase flows in porous geological formation. Meanwhile, environmental scientists use subsurface flow and transport models to investigate and compare for example various schemes to inject and store CO2 in subsurface geological formations, such as depleted reservoirs and deep saline aquifers. In this work, we first present an introduction of numerical simulation… More >

  • Open Access

    PROCEEDINGS

    Water Occurrence and Its Influencing Factors in Tight Gas Reservoirs

    Mianmo Meng1,*, Wenming Ji2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.4, pp. 1-1, 2023, DOI:10.32604/icces.2023.09159

    Abstract Tight reservoirs hold a vast natural gas in Ordos Basin, and efficient development of these resources can offset the energy shortage. Due to the low-porosity and low-permeability, hydraulic fracturing becomes necessary to tap its resources. After fracturing, a large amount of fracturing fluid fills pore space near hydraulic fracture, which will influence the gas production. This study focused on the water occurrence of tight gas reservoirs and its influencing factors. Samples were selected from Upper Paleozoic Taiyuan and Shihezi Formations from Ordos Basin. The main experiments include porosity, permeability, mineral composition, nitrogen adsorption (NA), mercury intrusion porosimetry (MIP), nuclear magnetic… More >

  • Open Access

    PROCEEDINGS

    Molecular Simulation of Multiphase Interface Characteristics and Microscale Flow Mechanisms of Oil and Brine in Carbonate Reservoir

    Zheng Li1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.3, pp. 1-1, 2023, DOI:10.32604/icces.2023.09141

    Abstract Pore structures of carbonate reservoirs are complicated leading to the indistinguishable two-phase flow mechanisms of oil and brine. This work from the molecular perspective investigates the interfacial tension of oil-brine two-phase system, the contact angle of oil-brine-carbonatite three-phase system, as well as the microscale flow mechanisms of oil and brine in carbonate nanopores, especially focusing on the effects of ion species, salinity, and carbonate surface. The following conclusions can be drawn. (1) Oil-brine interfacial tension increases with salinity for the same ion species, and increases in the order of KCl, NaCl, CaCl2 and MgCl2 for the same salinity. The cation… More >

  • Open Access

    PROCEEDINGS

    Analysis of Production Dynamics of Fractured Horizontal Well with CO2 Huff and Puff in Shale Reservoirs

    Meng Wang1, Jun Yao1, Dongyan Fan1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.08913

    Abstract In view of the current situation of the lack of suitable calculation models for the analysis of production dynamics of fractured horizontal well with CO2 huff and puff in shale reservoirs,based on the process and mechanism of CO2 huff and puff, an analytical model for the production dynamics of fractured horizontal well with CO2 huff and puff in shale reservoirs was proposed, in which took into account the changes in crude oil viscosity and volume caused by the difference in CO2 concentration at different locations in the formation after soaking and the adsorption and desorption process of CO2 in the… More >

  • Open Access

    ARTICLE

    Horizontal Well Interference Performance and Water Injection Huff and Puff Effect on Well Groups with Complex Fracture Networks: A Numerical Study

    Haoyu Fu1,2,3, Hua Liu1,2, Xiaohu Hu1,2, Lei Wang1,2,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.3, pp. 2285-2309, 2023, DOI:10.32604/cmes.2023.027996

    Abstract Well interference has become a common phenomenon with the increasing scale of horizontal well fracturing. Recent studies on well interference in horizontal wells do not properly reflect the physical model of the postfracturing well groups and the realistic fracturing process of infill wells. Establishing the correspondence between well interference causative factors and manifestations is of great significance for infill well deployment and secondary oil recovery. In this work, we develop a numerical model that considers low velocity non-Darcy seepage in shale reservoirs to study the inter-well interference phenomenon that occurs in the Santanghu field, and construct an explicit hydraulic fracture… More >

  • Open Access

    ARTICLE

    Investigation of Electrical Parameters of Fresh Water and Produced Mixed Injection in High-Salinity Reservoirs

    Jun Li1, Guofeng Cheng2, Hongwei Xiao3, Xiang Li4, Lizhi Wang4, Hui Xu5,*, Yu Wang6, Nannan Liu5, Shangping Chen5, Xing Shi5

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.10, pp. 2695-2706, 2023, DOI:10.32604/fdmp.2023.028115

    Abstract Assuming a reservoir with a typical salt-lake background in the Qaidam Basin as a testbed, in this study the variation law of the rock electrical parameters has been determined through water displacement experiments with different salinities. As made evident by the results, the saturation index increases with the degree of water injection. When the salinity of the injected water is lower than 80000 ppm, the resistivity of the rock sample first decreases, then it remains almost constant in an intermediate stage, and finally it grows, thereby giving rise to a ‘U’ profile behavior. As the salinity decreases, the water saturation… More > Graphic Abstract

    Investigation of Electrical Parameters of Fresh Water and Produced Mixed Injection in High-Salinity Reservoirs

  • Open Access

    ARTICLE

    Study of Oil-Bearing Drill Cuttings Cleaning and De-Oiling Treatment Method for Shale Gas Reservoirs

    Jialuo Rong1,2, Shuixiang Xie3,4, Huijing Geng5, Hao Hu1,2, Shanfa Tang1,2,*, Yuanpeng Cheng1,2,*

    Energy Engineering, Vol.120, No.8, pp. 1899-1917, 2023, DOI:10.32604/ee.2023.027650

    Abstract Due to its extensive use in shale gas exploration and development, oil-based drilling fluids generate large amounts of oil-bearing drill cuttings during the drilling process. The large amount of oil-bearing drill cuttings generated during the drilling process can lead to serious secondary contamination. In this study, a wetting agent FSC-6 with good hydrophobic and oleophobic properties was synthesized to construct an efficient oil removal system. For the first time, the mechanism of this system was analyzed by using the theory of adhesion function, interfacial tension and wettability. At the same time, a combined acoustic-chemical treatment process was applied to the… More >

  • Open Access

    ARTICLE

    THE EFFECTS OF VARIATION IN SHAPE OF SMOKE RESERVOIRS AND NUMBERS AND DISTRIBUTION OF SMOKE EXTRACTION POINTS ON THE TENABILITY WITHIN A COMPARTMENT

    HM Iqbal Mahmuda,b,*,† , Vijay Rajaramb, Khalid Moinuddinb

    Frontiers in Heat and Mass Transfer, Vol.20, pp. 1-17, 2023, DOI:10.5098/hmt.20.2

    Abstract This study has examined some important aspects of the engineered smoke control system, namely the shape of smoke reservoirs and the quantity and distribution of smoke extract points within a smoke compartment. Three different shapes of smoke reservoirs have been selected for analysis, namely square, rectangular, and T-shaped. The shape of the smoke reservoir has been varied, but the area, length and height have been kept identical. Four different configurations of extract points have been used in each shape of the reservoir: a single extract point located at the corner of the smoke reservoir, a single extract point located at… More >

Displaying 11-20 on page 2 of 75. Per Page