Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    ARTICLE

    A Multi-Layers Information Fused Deep Architecture for Skin Cancer Classification in Smart Healthcare

    Veena Dillshad1, Muhammad Attique Khan2,*, Muhammad Nazir1, Jawad Ahmad2, Dina Abdulaziz AlHammadi3, Taha Houda2, Hee-Chan Cho4, Byoungchol Chang5,*

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 5299-5321, 2025, DOI:10.32604/cmc.2025.063851 - 19 May 2025

    Abstract Globally, skin cancer is a prevalent form of malignancy, and its early and accurate diagnosis is critical for patient survival. Clinical evaluation of skin lesions is essential, but several challenges, such as long waiting times and subjective interpretations, make this task difficult. The recent advancement of deep learning in healthcare has shown much success in diagnosing and classifying skin cancer and has assisted dermatologists in clinics. Deep learning improves the speed and precision of skin cancer diagnosis, leading to earlier prediction and treatment. In this work, we proposed a novel deep architecture for skin cancer… More >

  • Open Access

    ARTICLE

    A Lightweight Multiscale Feature Fusion Network for Solar Cell Defect Detection

    Xiaoyun Chen1, Lanyao Zhang1, Xiaoling Chen1, Yigang Cen2, Linna Zhang1,*, Fugui Zhang1

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 521-542, 2025, DOI:10.32604/cmc.2024.058063 - 03 January 2025

    Abstract Solar cell defect detection is crucial for quality inspection in photovoltaic power generation modules. In the production process, defect samples occur infrequently and exhibit random shapes and sizes, which makes it challenging to collect defective samples. Additionally, the complex surface background of polysilicon cell wafers complicates the accurate identification and localization of defective regions. This paper proposes a novel Lightweight Multi-scale Feature Fusion network (LMFF) to address these challenges. The network comprises a feature extraction network, a multi-scale feature fusion module (MFF), and a segmentation network. Specifically, a feature extraction network is proposed to obtain… More >

  • Open Access

    ARTICLE

    A Fusion of Residual Blocks and Stack Auto Encoder Features for Stomach Cancer Classification

    Abdul Haseeb1, Muhammad Attique Khan2,*, Majed Alhaisoni3, Ghadah Aldehim4, Leila Jamel4, Usman Tariq5, Taerang Kim6, Jae-Hyuk Cha6

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3895-3920, 2023, DOI:10.32604/cmc.2023.045244 - 26 December 2023

    Abstract Diagnosing gastrointestinal cancer by classical means is a hazardous procedure. Years have witnessed several computerized solutions for stomach disease detection and classification. However, the existing techniques faced challenges, such as irrelevant feature extraction, high similarity among different disease symptoms, and the least-important features from a single source. This paper designed a new deep learning-based architecture based on the fusion of two models, Residual blocks and Auto Encoder. First, the Hyper-Kvasir dataset was employed to evaluate the proposed work. The research selected a pre-trained convolutional neural network (CNN) model and improved it with several residual blocks.… More >

  • Open Access

    ARTICLE

    Efficient Facial Recognition Authentication Using Edge and Density Variant Sketch Generator

    Summra Saleem1,2, M. Usman Ghani Khan1,2, Tanzila Saba3, Ibrahim Abunadi3, Amjad Rehman3,*, Saeed Ali Bahaj4

    CMC-Computers, Materials & Continua, Vol.70, No.1, pp. 505-521, 2022, DOI:10.32604/cmc.2022.018871 - 07 September 2021

    Abstract Image translation plays a significant role in realistic image synthesis, entertainment tasks such as editing and colorization, and security including personal identification. In Edge GAN, the major contribution is attribute guided vector that enables high visual quality content generation. This research study proposes automatic face image realism from freehand sketches based on Edge GAN. We propose a density variant image synthesis model, allowing the input sketch to encompass face features with minute details. The density level is projected into non-latent space, having a linear controlled function parameter. This assists the user to appropriately devise the More >

  • Open Access

    ARTICLE

    MRI Brain Tumor Segmentation Using 3D U-Net with Dense Encoder Blocks and Residual Decoder Blocks

    Juhong Tie1,2,*, Hui Peng2, Jiliu Zhou1,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.128, No.2, pp. 427-445, 2021, DOI:10.32604/cmes.2021.014107 - 22 July 2021

    Abstract The main task of magnetic resonance imaging (MRI) automatic brain tumor segmentation is to automatically segment the brain tumor edema, peritumoral edema, endoscopic core, enhancing tumor core and nonenhancing tumor core from 3D MR images. Because the location, size, shape and intensity of brain tumors vary greatly, it is very difficult to segment these brain tumor regions automatically. In this paper, by combining the advantages of DenseNet and ResNet, we proposed a new 3D U-Net with dense encoder blocks and residual decoder blocks. We used dense blocks in the encoder part and residual blocks in… More >

Displaying 1-10 on page 1 of 5. Per Page