Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (27)
  • Open Access

    ARTICLE

    MWaOA: A Bio-Inspired Metaheuristic Algorithm for Resource Allocation in Internet of Things

    Rekha Phadke1, Abdul Lateef Haroon Phulara Shaik2, Dayanidhi Mohapatra3, Doaa Sami Khafaga4,*, Eman Abdullah Aldakheel4, N. Sathyanarayana5

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-26, 2026, DOI:10.32604/cmc.2025.067564 - 09 December 2025

    Abstract Recently, the Internet of Things (IoT) technology has been utilized in a wide range of services and applications which significantly transforms digital ecosystems through seamless interconnectivity between various smart devices. Furthermore, the IoT plays a key role in multiple domains, including industrial automation, smart homes, and intelligent transportation systems. However, an increasing number of connected devices presents significant challenges related to efficient resource allocation and system responsiveness. To address these issue, this research proposes a Modified Walrus Optimization Algorithm (MWaOA) for effective resource management in smart IoT systems. In the proposed MWaOA, a crowding process… More >

  • Open Access

    ARTICLE

    Enhancing Bandwidth Allocation Efficiency in 5G Networks with Artificial Intelligence

    Sarmad K. Ibrahim1,*, Saif A. Abdulhussien2, Hazim M. ALkargole1, Hassan H. Qasim1

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 5223-5238, 2025, DOI:10.32604/cmc.2025.066548 - 30 July 2025

    Abstract The explosive growth of data traffic and heterogeneous service requirements of 5G networks—covering Enhanced Mobile Broadband (eMBB), Ultra-Reliable Low Latency Communication (URLLC), and Massive Machine Type Communication (mMTC)—present tremendous challenges to conventional methods of bandwidth allocation. A new deep reinforcement learning-based (DRL-based) bandwidth allocation system for real-time, dynamic management of 5G radio access networks is proposed in this paper. Unlike rule-based and static strategies, the proposed system dynamically updates itself according to shifting network conditions such as traffic load and channel conditions to maximize the achievable throughput, fairness, and compliance with QoS requirements. By using… More >

  • Open Access

    ARTICLE

    Slice-Based 6G Network with Enhanced Manta Ray Deep Reinforcement Learning-Driven Proactive and Robust Resource Management

    Venkata Satya Suresh kumar Kondeti1, Raghavendra Kulkarni1, Binu Sudhakaran Pillai2, Surendran Rajendran3,*

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 4973-4995, 2025, DOI:10.32604/cmc.2025.066428 - 30 July 2025

    Abstract Next-generation 6G networks seek to provide ultra-reliable and low-latency communications, necessitating network designs that are intelligent and adaptable. Network slicing has developed as an effective option for resource separation and service-level differentiation inside virtualized infrastructures. Nonetheless, sustaining elevated Quality of Service (QoS) in dynamic, resource-limited systems poses significant hurdles. This study introduces an innovative packet-based proactive end-to-end (ETE) resource management system that facilitates network slicing with improved resilience and proactivity. To get around the drawbacks of conventional reactive systems, we develop a cost-efficient slice provisioning architecture that takes into account limits on radio, processing, and… More >

  • Open Access

    ARTICLE

    Efficient Resource Management in IoT Network through ACOGA Algorithm

    Pravinkumar Bhujangrao Landge1, Yashpal Singh1, Hitesh Mohapatra2, Seyyed Ahmad Edalatpanah3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.2, pp. 1661-1688, 2025, DOI:10.32604/cmes.2025.065599 - 30 May 2025

    Abstract Internet of things networks often suffer from early node failures and short lifespan due to energy limits. Traditional routing methods are not enough. This work proposes a new hybrid algorithm called ACOGA. It combines Ant Colony Optimization (ACO) and the Greedy Algorithm (GA). ACO finds smart paths while Greedy makes quick decisions. This improves energy use and performance. ACOGA outperforms Hybrid Energy-Efficient (HEE) and Adaptive Lossless Data Compression (ALDC) algorithms. After 500 rounds, only 5% of ACOGA’s nodes are dead, compared to 15% for HEE and 20% for ALDC. The network using ACOGA runs for More >

  • Open Access

    REVIEW

    Survey on AI-Enabled Resource Management for 6G Heterogeneous Networks: Recent Research, Challenges, and Future Trends

    Hayder Faeq Alhashimi1, Mhd Nour Hindia1, Kaharudin Dimyati1,*, Effariza Binti Hanafi1, Feras Zen Alden2, Faizan Qamar3, Quang Ngoc Nguyen4,5,*

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 3585-3622, 2025, DOI:10.32604/cmc.2025.062867 - 19 May 2025

    Abstract The forthcoming 6G wireless networks have great potential for establishing AI-based networks that can enhance end-to-end connection and manage massive data of real-time networks. Artificial Intelligence (AI) advancements have contributed to the development of several innovative technologies by providing sophisticated specific AI mathematical models such as machine learning models, deep learning models, and hybrid models. Furthermore, intelligent resource management allows for self-configuration and autonomous decision-making capabilities of AI methods, which in turn improves the performance of 6G networks. Hence, 6G networks rely substantially on AI methods to manage resources. This paper comprehensively surveys the recent… More >

  • Open Access

    ARTICLE

    Quantum Inspired Adaptive Resource Management Algorithm for Scalable and Energy Efficient Fog Computing in Internet of Things (IoT)

    Sonia Khan1, Naqash Younas2, Musaed Alhussein3, Wahib Jamal Khan2, Muhammad Shahid Anwar4,*, Khursheed Aurangzeb3

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.3, pp. 2641-2660, 2025, DOI:10.32604/cmes.2025.060973 - 03 March 2025

    Abstract Effective resource management in the Internet of Things and fog computing is essential for efficient and scalable networks. However, existing methods often fail in dynamic and high-demand environments, leading to resource bottlenecks and increased energy consumption. This study aims to address these limitations by proposing the Quantum Inspired Adaptive Resource Management (QIARM) model, which introduces novel algorithms inspired by quantum principles for enhanced resource allocation. QIARM employs a quantum superposition-inspired technique for multi-state resource representation and an adaptive learning component to adjust resources in real time dynamically. In addition, an energy-aware scheduling module minimizes power More >

  • Open Access

    ARTICLE

    An Adaptive Firefly Algorithm for Dependent Task Scheduling in IoT-Fog Computing

    Adil Yousif*

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.3, pp. 2869-2892, 2025, DOI:10.32604/cmes.2025.059786 - 03 March 2025

    Abstract The Internet of Things (IoT) has emerged as an important future technology. IoT-Fog is a new computing paradigm that processes IoT data on servers close to the source of the data. In IoT-Fog computing, resource allocation and independent task scheduling aim to deliver short response time services demanded by the IoT devices and performed by fog servers. The heterogeneity of the IoT-Fog resources and the huge amount of data that needs to be processed by the IoT-Fog tasks make scheduling fog computing tasks a challenging problem. This study proposes an Adaptive Firefly Algorithm (AFA) for… More >

  • Open Access

    ARTICLE

    GPU Usage Time-Based Ordering Management Technique for Tasks Execution to Prevent Running Failures of GPU Tasks in Container Environments

    Joon-Min Gil1, Hyunsu Jeong1, Jihun Kang2,*

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 2199-2213, 2025, DOI:10.32604/cmc.2025.061182 - 17 February 2025

    Abstract In a cloud environment, graphics processing units (GPUs) are the primary devices used for high-performance computation. They exploit flexible resource utilization, a key advantage of cloud environments. Multiple users share GPUs, which serve as coprocessors of central processing units (CPUs) and are activated only if tasks demand GPU computation. In a container environment, where resources can be shared among multiple users, GPU utilization can be increased by minimizing idle time because the tasks of many users run on a single GPU. However, unlike CPUs and memory, GPUs cannot logically multiplex their resources. Additionally, GPU memory… More >

  • Open Access

    REVIEW

    Enhancing Evapotranspiration Estimation: A Bibliometric and Systematic Review of Hybrid Neural Networks in Water Resource Management

    Moein Tosan1, Mohammad Reza Gharib2,*, Nasrin Fathollahzadeh Attar3, Ali Maroosi4

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.2, pp. 1109-1154, 2025, DOI:10.32604/cmes.2025.058595 - 27 January 2025

    Abstract Accurate estimation of evapotranspiration (ET) is crucial for efficient water resource management, particularly in the face of climate change and increasing water scarcity. This study performs a bibliometric analysis of 352 articles and a systematic review of 35 peer-reviewed papers, selected according to PRISMA guidelines, to evaluate the performance of Hybrid Artificial Neural Networks (HANNs) in ET estimation. The findings demonstrate that HANNs, particularly those combining Multilayer Perceptrons (MLPs), Recurrent Neural Networks (RNNs), and Convolutional Neural Networks (CNNs), are highly effective in capturing the complex nonlinear relationships and temporal dependencies characteristic of hydrological processes. These… More >

  • Open Access

    ARTICLE

    AMAD: Adaptive Mapping Approach for Datacenter Networks, an Energy-Friend Resource Allocation Framework via Repeated Leader Follower Game

    Ahmad Nahar Quttoum1,*, Muteb Alshammari2

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4577-4601, 2024, DOI:10.32604/cmc.2024.054102 - 12 September 2024

    Abstract Cloud Datacenter Network (CDN) providers usually have the option to scale their network structures to allow for far more resource capacities, though such scaling options may come with exponential costs that contradict their utility objectives. Yet, besides the cost of the physical assets and network resources, such scaling may also impose more loads on the electricity power grids to feed the added nodes with the required energy to run and cool, which comes with extra costs too. Thus, those CDN providers who utilize their resources better can certainly afford their services at lower price-units when… More >

Displaying 1-10 on page 1 of 27. Per Page