Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Unraveling the Rheology of Nanocellulose Aqueous Suspensions: A Comprehensive Study on Biomass-Derived Nanofibrillated Cellulose

    Mingyue Miao1,#, Fei Wang1,#, Qing Li1, Longchen Tao1, Chenchen Dai1, Yu Liu1, Shujuan Han1, Wenshuai Chen1,*, Ping Lu2,*

    Journal of Renewable Materials, Vol.12, No.3, pp. 443-455, 2024, DOI:10.32604/jrm.2023.030412

    Abstract The rheological properties of nanocellulose aqueous suspensions play a critical role in the development of nanocellulose-based bulk materials. High-crystalline, high-aspect ratio, and slender nanofibrillated cellulose (NFC) were extracted from four biomass resources. The cellulose nanofibrils and nanofibril bundles formed inter-connected networks in the NFC aqueous suspensions. The storage moduli of the suspensions with different concentrations were higher than their corresponding loss moduli. As the concentration increased, the storage and loss modulus of NFC dispersion increased. When the shear rate increased to a certain value, there were differences in the changing trend of the rheological behavior of NFC aqueous suspensions derived… More > Graphic Abstract

    Unraveling the Rheology of Nanocellulose Aqueous Suspensions: A Comprehensive Study on Biomass-Derived Nanofibrillated Cellulose

  • Open Access

    ARTICLE

    A COMPARATIVE STUDY ON THERMAL CONDUCTIVITY AND RHEOLOGY PROPERTIES OF ALUMINA AND MULTI-WALLED CARBON NANOTUBE NANOFLUIDS

    Zan Wua, Zhaozan Fengb, Bengt Sundéna,*, Lars Wadsöc

    Frontiers in Heat and Mass Transfer, Vol.5, pp. 1-10, 2014, DOI:10.5098/hmt.5.18

    Abstract Thermal conductivity and rheology behavior of two aqueous nanofluids, i.e., alumina and multi-walled carbon nanotube (MWCNT) nanofluids, were experimentally investigated and compared with previous analytical models. Information about the possible agglomeration size and interfacial thermal resistance in the nanofluids were obtained and partially validated. By incorporating the effects of interfacial thermal resistance, a revised model was found to accurately reproduce the experimental data based on the agglomeration size extracted from the rheology analysis. In addition, the thermal conductivity change of the alumina/water nanofluid with elapsed time was investigated. Thermal conductivity measurements were also conducted for alumina/water and MWCNT/water nanofluid mixtures. More >

Displaying 1-10 on page 1 of 2. Per Page