Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (10)
  • Open Access

    ARTICLE

    Classification of Job Offers into Job Positions Using NET and BERT Language Models

    Lino Gonzalez-Garcia*, Miguel-Angel Sicilia, Elena García-Barriocanal

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-15, 2026, DOI:10.32604/cmc.2025.070813 - 09 December 2025

    Abstract Classifying job offers into occupational categories is a fundamental task in human resource information systems, as it improves and streamlines indexing, search, and matching between openings and job seekers. Comprehensive occupational databases such as NET or ESCO provide detailed taxonomies of interrelated positions that can be leveraged to align the textual content of postings with occupational categories, thereby facilitating standardization, cross-system interoperability, and access to metadata for each occupation (e.g., tasks, knowledge, skills, and abilities). In this work, we explore the effectiveness of fine-tuning existing language models (LMs) to classify job offers with occupational descriptors… More >

  • Open Access

    ARTICLE

    Why Transformers Outperform LSTMs: A Comparative Study on Sarcasm Detection

    Palak Bari, Gurnur Bedi, Khushi Joshi, Anupama Jawale*

    Journal on Artificial Intelligence, Vol.7, pp. 499-508, 2025, DOI:10.32604/jai.2025.072531 - 17 November 2025

    Abstract This study investigates sarcasm detection in text using a dataset of 8095 sentences compiled from MUStARD and HuggingFace repositories, balanced across sarcastic and non-sarcastic classes. A sequential baseline model (LSTM) is compared with transformer-based models (RoBERTa and XLNet), integrated with attention mechanisms. Transformers were chosen for their proven ability to capture long-range contextual dependencies, whereas LSTM serves as a traditional benchmark for sequential modeling. Experimental results show that RoBERTa achieves 0.87 accuracy, XLNet 0.83, and LSTM 0.52. These findings confirm that transformer architectures significantly outperform recurrent models in sarcasm detection. Future work will incorporate multimodal More >

  • Open Access

    ARTICLE

    Domain-Specific NER for Fluorinated Materials: A Hybrid Approach with Adversarial Training and Dynamic Contextual Embeddings

    Jiming Lan1, Hongwei Fu1,*, Yadong Wu1,2, Yaxian Liu1,3, Jianhua Dong1,2, Wei Liu1,2, Huaqiang Chen1,2

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 4645-4665, 2025, DOI:10.32604/cmc.2025.067289 - 23 October 2025

    Abstract In the research and production of fluorinated materials, large volumes of unstructured textual data are generated, characterized by high heterogeneity and fragmentation. These issues hinder systematic knowledge integration and efficient utilization. Constructing a knowledge graph for fluorinated materials processing is essential for enabling structured knowledge management and intelligent applications. Among its core components, Named Entity Recognition (NER) plays an essential role, as its accuracy directly impacts relation extraction and semantic modeling, which ultimately affects the knowledge graph construction for fluorinated materials. However, NER in this domain faces challenges such as fuzzy entity boundaries, inconsistent terminology,… More >

  • Open Access

    ARTICLE

    Deep Learning-Based NLP Framework for Public Sentiment Analysis on Green Consumption: Evidence from Social Media

    Luyu Ma1,*, Xiu Cheng1,*, Zongyan Xing1, Yue Wu1, Weiwei Jiang2

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 3921-3943, 2025, DOI:10.32604/cmc.2025.067786 - 23 September 2025

    Abstract Green consumption (GC) are crucial for achieving the Sustainable Development Goals (SDGs). However, few studies have explored public attitudes toward GC using social media data, missing potential public concerns captured through big data. To address this gap, this study collects and analyzes public attention toward GC using web crawler technology. Based on the data from Sina Weibo, we applied RoBERTa, an advanced NLP model based on transformer architecture, to conduct fine-grained sentiment analysis of the public’s attention, attitudes and hot topics on GC, demonstrating the potential of deep learning methods in capturing dynamic and contextual… More >

  • Open Access

    ARTICLE

    SESDP: A Sentiment Analysis-Driven Approach for Enhancing Software Product Security by Identifying Defects through Social Media Reviews

    Farah Mohammad1,2,*, Saad Al-Ahmadi3, Jalal Al-Muhtadi1,3

    CMC-Computers, Materials & Continua, Vol.83, No.1, pp. 1327-1345, 2025, DOI:10.32604/cmc.2025.060228 - 26 March 2025

    Abstract Software defect prediction is a critical component in maintaining software quality, enabling early identification and resolution of issues that could lead to system failures and significant financial losses. With the increasing reliance on user-generated content, social media reviews have emerged as a valuable source of real-time feedback, offering insights into potential software defects that traditional testing methods may overlook. However, existing models face challenges like handling imbalanced data, high computational complexity, and insufficient integration of contextual information from these reviews. To overcome these limitations, this paper introduces the SESDP (Sentiment Analysis-Based Early Software Defect Prediction)… More >

  • Open Access

    ARTICLE

    RoGRUT: A Hybrid Deep Learning Model for Detecting Power Trapping in Smart Grids

    Farah Mohammad1,*, Saad Al-Ahmadi2, Jalal Al-Muhtadi1,2

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 3175-3192, 2024, DOI:10.32604/cmc.2023.042873 - 15 May 2024

    Abstract Electricity theft is a widespread non-technical issue that has a negative impact on both power grids and electricity users. It hinders the economic growth of utility companies, poses electrical risks, and impacts the high energy costs borne by consumers. The development of smart grids is crucial for the identification of power theft since these systems create enormous amounts of data, including information on client consumption, which may be used to identify electricity theft using machine learning and deep learning techniques. Moreover, there also exist different solutions such as hardware-based solutions to detect electricity theft that… More >

  • Open Access

    ARTICLE

    RoBGP: A Chinese Nested Biomedical Named Entity Recognition Model Based on RoBERTa and Global Pointer

    Xiaohui Cui1,2,#, Chao Song1,2,#, Dongmei Li1,2,*, Xiaolong Qu1,2, Jiao Long1,2, Yu Yang1,2, Hanchao Zhang3

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3603-3618, 2024, DOI:10.32604/cmc.2024.047321 - 26 March 2024

    Abstract Named Entity Recognition (NER) stands as a fundamental task within the field of biomedical text mining, aiming to extract specific types of entities such as genes, proteins, and diseases from complex biomedical texts and categorize them into predefined entity types. This process can provide basic support for the automatic construction of knowledge bases. In contrast to general texts, biomedical texts frequently contain numerous nested entities and local dependencies among these entities, presenting significant challenges to prevailing NER models. To address these issues, we propose a novel Chinese nested biomedical NER model based on RoBERTa and Global Pointer… More >

  • Open Access

    ARTICLE

    The Entity Relationship Extraction Method Using Improved RoBERTa and Multi-Task Learning

    Chaoyu Fan*

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 1719-1738, 2023, DOI:10.32604/cmc.2023.041395 - 29 November 2023

    Abstract There is a growing amount of data uploaded to the internet every day and it is important to understand the volume of those data to find a better scheme to process them. However, the volume of internet data is beyond the processing capabilities of the current internet infrastructure. Therefore, engineering works using technology to organize and analyze information and extract useful information are interesting in both industry and academia. The goal of this paper is to explore the entity relationship based on deep learning, introduce semantic knowledge by using the prepared language model, develop an More >

  • Open Access

    ARTICLE

    Chinese Cyber Threat Intelligence Named Entity Recognition via RoBERTa-wwm-RDCNN-CRF

    Zhen Zhen1, Jian Gao1,2,*

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 299-323, 2023, DOI:10.32604/cmc.2023.042090 - 31 October 2023

    Abstract In recent years, cyber attacks have been intensifying and causing great harm to individuals, companies, and countries. The mining of cyber threat intelligence (CTI) can facilitate intelligence integration and serve well in combating cyber attacks. Named Entity Recognition (NER), as a crucial component of text mining, can structure complex CTI text and aid cybersecurity professionals in effectively countering threats. However, current CTI NER research has mainly focused on studying English CTI. In the limited studies conducted on Chinese text, existing models have shown poor performance. To fully utilize the power of Chinese pre-trained language models… More >

  • Open Access

    ARTICLE

    Leveraging Readability and Sentiment in Spam Review Filtering Using Transformer Models

    Sujithra Kanmani*, Surendiran Balasubramanian

    Computer Systems Science and Engineering, Vol.45, No.2, pp. 1439-1454, 2023, DOI:10.32604/csse.2023.029953 - 03 November 2022

    Abstract Online reviews significantly influence decision-making in many aspects of society. The integrity of internet evaluations is crucial for both consumers and vendors. This concern necessitates the development of effective fake review detection techniques. The goal of this study is to identify fraudulent text reviews. A comparison is made on shill reviews vs. genuine reviews over sentiment and readability features using semi-supervised language processing methods with a labeled and balanced Deceptive Opinion dataset. We analyze textual features accessible in internet reviews by merging sentiment mining approaches with readability. Overall, the research improves fake review screening by using More >

Displaying 1-10 on page 1 of 10. Per Page