Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (102)
  • Open Access

    ARTICLE

    Complementary-Label Adversarial Domain Adaptation Fault Diagnosis Network under Time-Varying Rotational Speed and Weakly-Supervised Conditions

    Siyuan Liu1,*, Jinying Huang2, Jiancheng Ma1, Licheng Jing2, Yuxuan Wang2

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 761-777, 2024, DOI:10.32604/cmc.2024.049484

    Abstract Recent research in cross-domain intelligence fault diagnosis of machinery still has some problems, such as relatively ideal speed conditions and sample conditions. In engineering practice, the rotational speed of the machine is often transient and time-varying, which makes the sample annotation increasingly expensive. Meanwhile, the number of samples collected from different health states is often unbalanced. To deal with the above challenges, a complementary-label (CL) adversarial domain adaptation fault diagnosis network (CLADAN) is proposed under time-varying rotational speed and weakly-supervised conditions. In the weakly supervised learning condition, machine prior information is used for sample annotation More >

  • Open Access

    ARTICLE

    Linear and Non-Linear Dynamics of Inertial Waves in a Rotating Cylinder with Antiparallel Inclined Ends

    Mariya Shiryaeva1, Mariya Subbotina2, Stanislav Subbotin1,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.4, pp. 787-802, 2024, DOI:10.32604/fdmp.2024.048165

    Abstract This work is devoted to the experimental study of inertial wave regimes in a non-uniform rotating cylinder with antiparallel inclined ends. In this setting, the cross-section of the cylinder is divided into two regions where the fluid depth increases or decreases with radius. Three different regimes are found: inertial wave attractor, global oscillations (the cavity’s resonant modes) and regime of symmetric reflection of wave beams. In linear wave regimes, a steady single vortex elongated along the rotation axis is generated. The location of the wave’s interaction with the sloping ends determines the vortex position and More >

  • Open Access

    ARTICLE

    Dynamics of Low-Viscosity Liquids Interface in an Unevenly Rotating Vertical Layer

    Victor Kozlov1,*, Vladimir Saidakov1, Nikolai Kozlov2

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.4, pp. 693-703, 2024, DOI:10.32604/fdmp.2024.048068

    Abstract The behavior of two immiscible low-viscosity liquids differing in density and viscosity in a vertical flat layer undergoing modulated rotation is experimentally studied. The layer has a circular axisymmetric boundary. In the absence of modulation of the rotation speed, the interphase boundary has the shape of a short axisymmetric cylinder. A new effect has been discovered, under the influence of rotation speed modulation, the interface takes on a new dynamic equilibrium state. A more viscous liquid covers the end boundaries of the layer in the form of thin films, which have the shape of round… More >

  • Open Access

    PROCEEDINGS

    A Modified Rate-Dependent Peridynamic Model with Rotation Effect for Dynamic Mechanical Behavior of Ceramic Materials

    Yaxun Liu1,2, Lisheng Liu1,2,*, Hai Mei1,2, Qiwen Liu1,2, Xin Lai1,2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.4, pp. 1-1, 2023, DOI:10.32604/icces.2023.09007

    Abstract As a mathematical expression of the dynamic mechanical behavior, the constitutive model plays an indispensable role in numerical simulations of ceramic materials. The current bond-based peridynamic constitutive models can accurately describe the dynamic mechanical behavior of partial ceramic materials under impact loading, however, the predicted value of the Poisson’s ratio is 0.25, which is not true for most of the known ceramic materials. Herein, based on the existing bond-based peridynamic constitutive model, the current study utilizes the description of tangential bond force and considers the influence of bond force on rotation to accurately predict the… More >

  • Open Access

    ARTICLE

    Responses of Wheat Production, Quality, and Soil Profile Properties to Biochar Applied at Different Seasons in a Rice-Wheat Rotation

    Lipei Chen, Rilie Deng, Xuewen Li, Min Yu, Hongdong Xiao*

    Phyton-International Journal of Experimental Botany, Vol.92, No.12, pp. 3359-3370, 2023, DOI:10.32604/phyton.2023.046877

    Abstract

    In the rice-wheat rotation system, biochar (BC) can be applied at the initiation of the rice or wheat season. Here, we compared the effects of BC that were applied at two different crop seasons on wheat production, quality, and soil profile properties in a rice-wheat rotation system with nitrogen (N) fertilizer applied at 280 kg/ha rate. Results showed that both wheat grain production and N recovery use efficiency were influenced by BC applied at two crop seasons. Biochar application did not affect the total non-essential amino-acid, but when applied during wheat season, BC significantly (p

    More >

  • Open Access

    ARTICLE

    Study on Rotational Effects of Modern Turbine Blade on Coolant Injecting Nozzle Position with Film Cooling and Vortex Composite Performance

    Jiefeng Wang1, Eddie Yin Kwee Ng2,*, Jianwu Li1, Yanhao Cao1, Yanan Huang1, Liang Li1,2,3,*

    Frontiers in Heat and Mass Transfer, Vol.21, pp. 1-31, 2023, DOI:10.32604/fhmt.2023.045510

    Abstract The flow structure of the vortex cooling is asymmetrical compared to the traditional gas turbine leading edge cooling, such as the impingement cooling and the axial flow cooling. This asymmetrical property will affect the cooling performance in the blade leading edge, whereas such effects are not found in most of the studies on vortex cooling due to the neglect of the mainstream flow in the airfoil channel. This study involves the mainstream flow field and the rotational effects based on the profile of the GE E3 blade to reveal the mechanism of the asymmetrical flow structure… More > Graphic Abstract

    Study on Rotational Effects of Modern Turbine Blade on Coolant Injecting Nozzle Position with Film Cooling and Vortex Composite Performance

  • Open Access

    ARTICLE

    THERMAL DIFFUSION AND ROTATIONAL EFFECTS ON MAGNETO HYDRODYNAMIC MIXED CONVECTION FLOW OF HEAT ABSORBING/GENERATING VISCO- ELASTIC FLUID THROUGH A POROUS CHANNEL

    L. Ramamohan Reddya , M. C. Rajub,*, G.S.S. Rajuc, N. A. Reddyb

    Frontiers in Heat and Mass Transfer, Vol.7, pp. 1-12, 2016, DOI:10.5098/hmt.7.20

    Abstract This investigation presents an analytical study on magnetohydrodynamic (MHD), convective flow of a viscoelastic, incompressible, radiative, chemically reactive, electrically conducting and rotating fluid through a porous medium filled in a vertical channel in the presence of thermal diffusion. A magnetic field of uniform strength is applied along the axis of rotation. The fluid is assumed to act on with a periodic time variation of the pressure gradient in upward direction vertically. One of the plates is maintained at non-uniform temperature and the temperature difference of the walls of the channel is assumed high enough that More >

  • Open Access

    ARTICLE

    UNSTEADY HYDROMAGNETIC HEAT AND MASS TRANSFER NATURAL CONVECTION FLOW PAST AN EXPONENTIALLY ACCELERATED VERTICAL PLATE WITH HALL CURRENT AND ROTATION IN THE PRESENCE OF THERMAL AND MASS DIFFUSIONS

    J. K. Singha,*, N. Joshia , S. G. Beguma, C. T. Srinivasab

    Frontiers in Heat and Mass Transfer, Vol.7, pp. 1-12, 2016, DOI:10.5098/hmt.7.24

    Abstract In the present analytical study, we have considered unsteady hydromagnetic heat and mass transfer natural convection flow of an electrically conducting, heat absorbing and chemically reacting fluid past an exponentially accelerated vertical plate in a uniform porous medium taking Hall current and rotation into account. The species concentration near the plate is considered to be varies linearly with time. Two particular cases for plate temperature are considered i.e. (i) plate temperature is uniform and (ii) plate temperature varies linearly with time and after some time it is maintained at uniform temperature. The coupled partial differential More >

  • Open Access

    REVIEW

    A Survey on Acute Leukemia Expression Data Classification Using Ensembles

    Abdel Nasser H. Zaied1, Ehab Rushdy2, Mona Gamal3,*

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 1349-1364, 2023, DOI:10.32604/csse.2023.033596

    Abstract Acute leukemia is an aggressive disease that has high mortality rates worldwide. The error rate can be as high as 40% when classifying acute leukemia into its subtypes. So, there is an urgent need to support hematologists during the classification process. More than two decades ago, researchers used microarray gene expression data to classify cancer and adopted acute leukemia as a test case. The high classification accuracy they achieved confirmed that it is possible to classify cancer subtypes using microarray gene expression data. Ensemble machine learning is an effective method that combines individual classifiers to… More >

  • Open Access

    ARTICLE

    TURBULENT HEAT TRANSFER IN AN AXIALLY ROTATING PIPE AT HIGH ROTATION RATE: A NUMERICAL STUDY

    Obed Y.W. Abotsi, John P. Kizito*

    Frontiers in Heat and Mass Transfer, Vol.14, pp. 1-6, 2020, DOI:10.5098/hmt.14.24

    Abstract In this paper, turbulent water flow and heat transfer are studied numerically in a pipe which is rotating about its longitudinal axis. Computations were conducted for axial Reynolds numbers ranging from 10000 to 30000 at different rotation rates. Rotation rate (N) is the ratio of the rotational Reynolds number to the axial Reynolds number. Predictions showed that the Nusselt number (Nu) of the stationary pipe (N=0) was augmented by 50-58% at N=5, 105-132% at N=10, 150-201% at N=15, 208-265% at N=20, and 320-373% at N=30. Improvements in the heat transfer rate was linked to the More >

Displaying 1-10 on page 1 of 102. Per Page