Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (48)
  • Open Access

    ARTICLE

    Structural and Vibration Characteristics of Rotating Packed Beds System for Carbon Capture Applications Using Finite Element Method

    Yunjun Lee1, Sanggyu Cheon2, Woo Chul Chung1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 3381-3403, 2025, DOI:10.32604/cmes.2025.073729 - 23 December 2025

    Abstract The application of carbon capture systems on ships is technically constrained by limited onboard space and the weight of the conventional absorption tower. The rotating packed bed (RPB) has emerged as a promising alternative due to its small footprint and high mass transfer performance. However, despite its advantages, the structural and vibration stability of RPBs at high rotational speed remains insufficiently studied, and no international design standards currently exist for RPBs. To address this gap, this study performed a comprehensive finite element analysis (FEA) using ANSYS to investigate the structural and dynamic characteristics of an… More >

  • Open Access

    ARTICLE

    Numerical Analysis of Rotor Blade Angle Influence on Stall Onset in an Axial Fan

    Yongsheng Wang1,2, Xiangwu Lu1, Wei Yuan1,*, Lei Zhang1

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.6, pp. 1505-1528, 2025, DOI:10.32604/fdmp.2025.061052 - 30 June 2025

    Abstract This study explores the influence of rotor blade angle on stall inception in an axial fan by means of numerical simulations grounded in the Reynolds-Averaged Navier-Stokes (RANS) equations and the Realizable k-ε turbulence model. By analyzing the temporal behavior of the outlet static pressure, along with the propagation velocity of stall inception, the research identifies distinct patterns in the development of stall. The results reveal that stall inception originates in the second rotor impeller. At a blade angle of 27°, the stall inception follows a modal wave pattern, while in all other cases, it assumes the More >

  • Open Access

    ARTICLE

    Robust Backstepping Control of a Quadrotor Unmanned Aerial Vehicle under Colored Noises

    Mehmet Karahan*

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 777-798, 2025, DOI:10.32604/cmc.2024.059123 - 03 January 2025

    Abstract Advances in software and hardware technologies have facilitated the production of quadrotor unmanned aerial vehicles (UAVs). Nowadays, people actively use quadrotor UAVs in essential missions such as search and rescue, counter-terrorism, firefighting, surveillance, and cargo transportation. While performing these tasks, quadrotors must operate in noisy environments. Therefore, a robust controller design that can control the altitude and attitude of the quadrotor in noisy environments is of great importance. Many researchers have focused only on white Gaussian noise in their studies, whereas researchers need to consider the effects of all colored noises during the operation of… More >

  • Open Access

    ARTICLE

    Analysis of Rotor-Seizure-Induced Pressure Rise in a Nuclear Reactor Primary Cooling Loop

    Haoyu Cui1, Congxin Yang1,2,*, Yanlei Guo1, Tianzhi Lv1, Sen Zhao1

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.12, pp. 2907-2926, 2024, DOI:10.32604/fdmp.2024.055301 - 23 December 2024

    Abstract Most of existing methods for the safety assessment of the primary cooling loop of nuclear reactors in conditions of reactor coolant pump (RCP) failure (rotor seizure accident) essentially rely on the combination of one-dimensional theory and experience. This study introduces a novel three-dimensional model of the ‘Hualong-1’ (HPR1000) primary loop and uses the method of matching the resistance characteristics of the tube to ensure that the main pump operates at the rated operating condition. In particular, the three-dimensional unsteady numerical calculation of the RCP behavior in the rotor-seizure accident condition is carried out in the More >

  • Open Access

    ARTICLE

    Real-Time Implementation of Quadrotor UAV Control System Based on a Deep Reinforcement Learning Approach

    Taha Yacine Trad1,*, Kheireddine Choutri1, Mohand Lagha1, Souham Meshoul2, Fouad Khenfri3, Raouf Fareh4, Hadil Shaiba5

    CMC-Computers, Materials & Continua, Vol.81, No.3, pp. 4757-4786, 2024, DOI:10.32604/cmc.2024.055634 - 19 December 2024

    Abstract The popularity of quadrotor Unmanned Aerial Vehicles (UAVs) stems from their simple propulsion systems and structural design. However, their complex and nonlinear dynamic behavior presents a significant challenge for control, necessitating sophisticated algorithms to ensure stability and accuracy in flight. Various strategies have been explored by researchers and control engineers, with learning-based methods like reinforcement learning, deep learning, and neural networks showing promise in enhancing the robustness and adaptability of quadrotor control systems. This paper investigates a Reinforcement Learning (RL) approach for both high and low-level quadrotor control systems, focusing on attitude stabilization and position… More >

  • Open Access

    ARTICLE

    Intelligent PID Control Method for Quadrotor UAV with Serial Humanoid Intelligence

    Linlin Zhang, Lvzhao Bai, Jianshu Liang, Zhiying Qin*, Yuejing Zhao

    Computer Systems Science and Engineering, Vol.48, No.6, pp. 1557-1579, 2024, DOI:10.32604/csse.2024.054237 - 22 November 2024

    Abstract Quadrotor unmanned aerial vehicles (UAVs) are widely used in inspection, agriculture, express delivery, and other fields owing to their low cost and high flexibility. However, the current UAV control system has shortcomings such as poor control accuracy and weak anti-interference ability to a certain extent. To address the control problem of a four-rotor UAV, we propose a method to enhance the controller’s accuracy by considering underactuated dynamics, nonlinearities, and external disturbances. A mathematical model is constructed based on the flight principles of the quadrotor UAV. We develop a control algorithm that combines humanoid intelligence with… More >

  • Open Access

    PROCEEDINGS

    Investigation of Flutter Mechanism in Transonic Rotor Blades with Structural Damage via SPOD Method

    Chunxiu Ji1, Dan Xie1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.012592

    Abstract The persistence of accidents attributed to structural damage in traditional rotor blades remains a pressing concern for aeronautical experts. Given the infrequency of flutter in undamaged blades, this study directs its attention to a rotor blade afflicted with structural damage, with a primary objective of discerning flutter occurrences, elucidating underlying mechanisms, and scrutinizing resultant aeroelastic responses. This paper presents an investigation into the flutter mechanism observed in transonic rotor blades subjected to structural damage, employing the Spectral Proper Orthogonal Decomposition(SPOD) method. The study aims to understand the dynamics of flutter under the influence of structural More >

  • Open Access

    ARTICLE

    Cooling and Optimization in the Groove of the Outer Rotor Hub Motor

    Zhuo Liu, Yecui Yan*

    Frontiers in Heat and Mass Transfer, Vol.22, No.5, pp. 1443-1460, 2024, DOI:10.32604/fhmt.2024.056091 - 30 October 2024

    Abstract The external rotor hub motor adopts direct drive mode, no deceleration drive device, and has a compact structure. Its axial size is smaller than that of a deceleration-driven hub motor, which greatly reduces the weight of the vehicle and increases the cruising range of the vehicle. Because of the limited special working environment and performance requirements, the hub motor has a small internal space and a large heat generation, so it puts forward higher requirements for heat dissipation capacity. For the external rotor hub motor, a new type of in-tank water-cooled structure of hub motor… More >

  • Open Access

    ARTICLE

    Analysis of Convective Heat Exchanges and Fluid Dynamics in the Air Gap of a Discoid Technology Rotary Machine

    Abdellatif El Hannaoui1,*, Rachid Boutarfa1, Chadia Haidar2

    Frontiers in Heat and Mass Transfer, Vol.22, No.3, pp. 733-746, 2024, DOI:10.32604/fhmt.2024.050520 - 11 July 2024

    Abstract The proposed work focuses on the in-depth study of convective heat transfer in the unconfined air gap of a discoidal rotor-stator system. The rotary cooling mechanism is achieved by the injection of two air jets, while the cavity geometry is characterized by a dimensionless parameter G. The numerical analysis primarily concentrated on the effect of flow velocity and rotation on the heat exchange process. More precisely, the range of analysis extends from the rotational Reynolds number to , while varying the Reynolds value of the jet in a range from to . To carry out More >

  • Open Access

    ARTICLE

    Transient Analysis of a Reactor Coolant Pump Rotor Seizure Nuclear Accident

    Mengdong An1, Weiyuan Zhong1, Wei Xu2, Xiuli Wang1,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.6, pp. 1331-1349, 2024, DOI:10.32604/fdmp.2023.046604 - 27 June 2024

    Abstract The reactor coolant pump (RCP) rotor seizure accident is defined as a short-time seizure of the RCP rotor. This event typically leads to an abrupt flow decrease in the corresponding loop and an ensuing reactor and turbine trip. The significant reduction of core coolant flow while the reactor is being operated at full load can have very negative consequences. This potentially dangerous event is typically characterized by a complex transient behavior in terms of flow conditions and energy transformation, which need to be analyzed and understood. This study constructed transient flow and rotational speed mathematical More > Graphic Abstract

    Transient Analysis of a Reactor Coolant Pump Rotor Seizure Nuclear Accident

Displaying 1-10 on page 1 of 48. Per Page