Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (36)
  • Open Access

    ARTICLE

    Rupture and Instability of Soft Films due to Moisture Vaporization in Microelectronic Devices

    Linsen Zhu1, Jiang Zhou2, Xuejun Fan2

    CMC-Computers, Materials & Continua, Vol.39, No.2, pp. 113-134, 2014, DOI:10.3970/cmc.2014.039.113

    Abstract In this paper, a damage mechanics-based continuum theory is developed for the coupled analysis of moisture vaporization, moisture absorption and desorption, heat conduction, and mechanical stress for a reflow process in microelectronic devices. The extremely compliant film has been used in wafer level lamination process. Such a soft film experiences cohesive rupture subjected to moisture absorption during reflow. The numerical simulation results have demonstrated that vapor pressure due to moisture vaporization is the dominant driving force for the failures. The correlation between the vapor pressure evolution and the film rupture observed from the experiments have… More >

  • Open Access

    ARTICLE

    IVUS-Based Computational Modeling and Planar Biaxial Artery Material Properties for Human Coronary Plaque Vulnerability Assessment

    Molecular & Cellular Biomechanics, Vol.9, No.1, pp. 77-94, 2012, DOI:10.3970/mcb.2012.009.077

    Abstract Image-based computational modeling has been introduced for vulnerable atherosclerotic plaques to identify critical mechanical conditions which may be used for better plaque assessment and rupture predictions. In vivo patient-specific coronary plaque models are lagging due to limitations on non-invasive image resolution, flow data, and vessel material properties. A framework is proposed to combine intravascular ultrasound (IVUS) imaging, biaxial mechanical testing and computational modeling with fluid-structure interactions and anisotropic material properties to acquire better and more complete plaque data and make more accurate plaque vulnerability assessment and predictions. Impact of pre-shrink-stretch process, vessel curvature and high More >

  • Open Access

    RESIDENT’S CORNER

    Hypercreatinemia: think beyond acute kidney injury

    Ankur Gupta1, Mohan Biyani1, Mudit Gupta2, Marc Eric Saltel3

    Canadian Journal of Urology, Vol.18, No.6, pp. 6066-6068, 2011

    Abstract Urinary bladder rupture associated with severe hypercreatinemia is a rare clinical presentation. We herein report a 60-year-old interesting patient who was found to have intraperitoneal bladder rupture and pseudo-renal failure. High rate of suspicion and timely diagnosis is the key in management of this condition, which led to complete recovery in our patient. More >

  • Open Access

    ABSTRACT

    Intravascular Ultrasound (IVUS)-Based Computational Modeling and Planar Biaxial Artery Material Properties for Human Coronary Plaque Vulnerability Assessment

    Mingchao Cai, Chun Yang, Mehmet H. Kural, Richard Bach, David Muccigrosso, Deshan Yang, Jie Zheng, Kristen L. Billiar, Dalin Tang

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.19, No.4, pp. 97-104, 2011, DOI:10.3970/icces.2011.019.097

    Abstract Image-based computational modeling has been introduced for vulnerable atherosclerotic plaques to identify critical mechanical conditions which may be used for better risk assessment and rupture predictions. In vivo patient-specific coronary plaque models are lagging due to limitations on non-invasive image resolution, flow data, and vessel material properties. We propose a procedure where intravascular ultrasound (IVUS) imaging, biaxial mechanical testing and computational modeling are combined together to acquire better and more complete plaque data and make more accurate plaque vulnerability assessment and predictions. More >

  • Open Access

    ABSTRACT

    The energy localization by the rupture propagation

    I.A. Miklashevich1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.15, No.4, pp. 145-152, 2010, DOI:10.3970/icces.2010.015.145

    Abstract The simple analytical model for the energy flux by the earthquake is proposed. The energy flux can be evaluated through the Umov-Pointing vector by the rupture propagation in media. Discontinuity of vector components is found. This discontinuity cause the change of an energy flow direction and localization of the energy field. More >

  • Open Access

    ARTICLE

    Dynamic Effects on the Formation and Rupture of Aneurysms

    J.S. Ren*

    Molecular & Cellular Biomechanics, Vol.7, No.4, pp. 213-224, 2010, DOI:10.3970/mcb.2010.007.213

    Abstract Dynamic analysis of an axially stretched arterial wall with collagen fibers distributed in two preferred directions under a suddenly applied constant internal pressure along with the possibility of the formation and rupture of aneurysm are examined within the framework of nonlinear dynamics. A two layer tube model with the fiber-reinforced composite-based incompressible anisotropic hyper-elastic material is employed to model the mechanical behavior of the arterial wall. The maximum amplitudes and the phase diagrams are given by numerical computation of the differential relation. It is shown that the arterial wall undergoes nonlinear periodic oscillation and no More >

  • Open Access

    ARTICLE

    Three-Dimensional Carotid Plaque Progression Simulation Using Meshless Generalized Finite Difference Method Based on Multi-Year MRI Patient-Tracking Data

    Chun Yang1,2, Dalin Tang2,3 Satya Atluri4

    CMES-Computer Modeling in Engineering & Sciences, Vol.57, No.1, pp. 51-76, 2010, DOI:10.3970/cmes.2010.057.051

    Abstract Cardiovascular disease (CVD) is becoming the number one cause of death worldwide. Atherosclerotic plaque rupture and progression are closely related to most severe cardiovascular syndromes such as heart attack and stroke. Mechanisms governing plaque rupture and progression are not well understood. A computational procedure based on three-dimensional meshless generalized finite difference (MGFD) method and serial magnetic resonance imaging (MRI) data was introduced to quantify patient-specific carotid atherosclerotic plaque growth functions and simulate plaque progression. Participating patients were scanned three times (T1, T2, and T3, at intervals of about 18 months) to obtain plaque progression data.… More >

  • Open Access

    RESIDENT’S CORNER

    Blunt testicular trauma results in rupture of mixed germ cell tumor

    Adam Luchey, Aimee Rogers, Susan E. Saunders, H. James Williams, Henry J. Fooks, Stanley Zaslau

    Canadian Journal of Urology, Vol.16, No.6, pp. 4955-4957, 2009

    Abstract It is extremely rare that a documented case of blunt trauma results in rupture of a testicular tumor. We present the case of a 24-year-old man who was crushed by a tree who developed spontaneous testicular rupture. At surgical exploration, he was found to ultimately have a mixed germ cell tumor of the testicle. This case illustrates the importance of physical examination, patient clinical history, and scrotal ultrasound in the management of scrotal trauma. In this instance, the testicular mass ruptured and lead to signifi cant testicular hemorrhage. More >

  • Open Access

    RESIDENT’S CORNER

    Splenic rupture following shock wave lithotripsy

    Wesley M. White, Steven A. Morris, Frederick A. Klein, W. Bedford Waters

    Canadian Journal of Urology, Vol.15, No.4, pp. 4196-4199, 2008

    Abstract We present the case of a 61-year-old female who underwent extracorporeal shock wave lithotripsy (ESWL) treatment of a 12 mm left ureteropelvic junction stone. Following an uneventful and successful treatment, the patient was discharged. The patient re-presented to the emergency room 24 hours later with abdominal pain and hypotension. CT of the abdomen revealed a shattered spleen necessitating emergent removal. The patient recovered without difficulty. Although splenic rupture following shock wave lithotripsy (SWL) has been reported previously, this case represents the only published report of splenic rupture with use of a third generation electromagnetic lithotripter. More >

  • Open Access

    ARTICLE

    Cyclic Bending Contributes to High Stress in a Human Coronary Atherosclerotic Plaque and Rupture Risk: In Vitro Experimental Modeling and Ex Vivo MRI-Based Computational Modeling Approach

    Chun Yang∗,†, Dalin Tang∗,‡, Shunichi Kobayashi§, Jie Zheng, Pamela K. Woodard§, Zhongzhao Teng*, Richard Bach||, David N. Ku∗∗

    Molecular & Cellular Biomechanics, Vol.5, No.4, pp. 259-274, 2008, DOI:10.3970/mcb.2008.005.259

    Abstract Many acute cardiovascular syndromes such as heart attack and stroke are caused by atherosclerotic plaque ruptures which often happen without warning. MRI-based models with fluid-structure interactions (FSI) have been introduced to perform flow and stress/strain analysis for atherosclerotic plaques and identify possible mechanical and morphological indices for accurate plaque vulnerability assessment. In this paper, cyclic bending was added to 3D FSI coronary plaque models for more accurate mechanical predictions. Curvature variation was prescribed using the data of a human left anterior descending (LAD) coronary artery. Five computational models were constructed based on ex vivo MRI… More >

Displaying 21-30 on page 3 of 36. Per Page