Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (27)
  • Open Access

    ABSTRACT

    Role of Intracoronary OCT in Diagnosis and Treatment of Acute Coronary Syndrome

    Haibo Jia1,*, Bo Yu1

    Molecular & Cellular Biomechanics, Vol.16, Suppl.1, pp. 23-24, 2019, DOI:10.32604/mcb.2019.05708

    Abstract Coronary angiography is the traditional standard imaging modality for visual evaluation of coronary anatomy and guidance of percutaneous coronary interventions (PCI). However, the 2-dimensional lumenogram cannot depict the arterial vessel per se and plaque characteristics, or directly assess the stenting result. Intracoronary imaging by means of intravascular ultrasound (IVUS) and optical coherence tomography (OCT) provides valuable incremental information that can be used clinically to optimize stent implantation and thereby minimize stent-related problems. Beyond guidance of stent selection and optimisation, imaging provides critical insights into the pathophysiology of acute coronary syndrome (ACS), greater clarity when confronted… More >

  • Open Access

    ABSTRACT

    The Role of Shear Stress in Atherosclerotic Plaque Progression, Destabilization and Rupture

    J. J. Wentzel1,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.1, pp. 7-8, 2019, DOI:10.32604/mcb.2019.05696

    Abstract The pathophysiology of atherosclerosis is complex and multifactorial, involving systemic risk factors and biomechanical stimuli. Atherosclerotic plaques predominantly form in regions that are exposed to low shear stress of the blood at the vessel wall, whereas regions of moderate and high shear stress are generally protected. For more than 20 years, my research group performs studies to investigate the role of shear stress in atherosclerotic plaque formation and rupture in coronary and carotid arteries of patients and laboratory animals. For that reason, new technology was developed to 3D reconstruct arteries based on fusion of multiple… More >

  • Open Access

    ABSTRACT

    Machine Learning Prediction of Creep Rupture Time for Steels

    Masahiko Demura1,*, Junya Sakurai1,2, Masayoshi Yamazaki1, Junya Inoue1,2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.22, No.2, pp. 123-123, 2019, DOI:10.32604/icces.2019.05303

    Abstract Creep is a complicated and time-dependent phenomenon, which is affected by the initial state and the degradation of microstructures. It is thus considered that the information about the microstructure is essential to predict the creep rupture time. On the other hand, there is a strong, practical need for the prediction without the investigation of microstructures nor the disclosure of the detailed process that should control the initial microstructures. In this study, we examined how modern machine learning technique can help to predict the creep rupture time in heat-resistant ferrite-type steels without the direct information about… More >

  • Open Access

    ARTICLE

    Clinical outcomes of percutaneous or surgical closure of ruptured sinus of Valsalva aneurysm

    Jia-Wang Xiao, Qi-Guang Wang, Duan-Zhen Zhang, Chun-Sheng Cui, Xiumin Han, Po Zhang, Chuangju Hou, Xian-Yang Zhu

    Congenital Heart Disease, Vol.13, No.2, pp. 305-310, 2018, DOI:10.1111/chd.12572

    Abstract Objective: To evaluate the clinical efficacy, safety, and long-term outcomes of percutaneous closure (PC) and surgical repair of ruptured sinus of Valsalva aneurysm (RSVA).
    Methods: Eighty-five consecutive patients with RSVA were included in this study. Patients were considered candidates for PC if they met the criterion, surgical repair was performed on patients who were unsuitable or failed PC. Of them, 30 patients underwent PC, while the other 55 patients had surgical repair.
    Results: RSVA was successfully occluded in 29 of 30 patients who were treated by PC. The mean narrowest diameter at the ruptured site was 6.45 ±… More >

  • Open Access

    ARTICLE

    Using 2D In Vivo IVUS-Based Models for Human Coronary Plaque Progression Analysis and Comparison with 3D Fluid-Structure Interaction Models: A Multi-Patient Study

    Hongjian Wang*, Jie Zheng, LiangWang, Akiko Maehara§, Chun YangII, David Muccigrosso, Richard BachkII, Jian Zhu**, Gary S. Mintz§, Dalin Tang*,‡,††

    Molecular & Cellular Biomechanics, Vol.12, No.2, pp. 107-122, 2015, DOI:10.3970/mcb.2015.012.107

    Abstract Computational modeling has been used extensively in cardiovascular and biological research, providing valuable information. However, 3D vulnerable plaque model construction with complex geometrical features and multicomponents is often very time consuming and not practical for clinical implementation. This paper investigated if 2D atherosclerotic plaque models could be used to replace 3D models to perform correlation analysis and achieve similar results. In vivo intravascular ultrasound (IVUS) coronary plaque data were acquired from a patient follow-up study to construct 2D structure-only and 3D FSI models to obtain plaque wall stress (PWS) and strain (PWSn) data. One hundred… More >

  • Open Access

    ARTICLE

    Investigating Creep Performance and Predicting Rupture Time for Rotating FGM Disc under Different Thermal Gradients

    K. Khanna1,2, V.K. Gupta3, S.P. Nigam1

    CMC-Computers, Materials & Continua, Vol.48, No.3, pp. 147-161, 2015, DOI:10.3970/cmc.2015.048.147

    Abstract A mathematical model is developed to describe the steady state creep in a rotating Al-SiCp disc having a non-linear thickness profile and distribution of SiC particles along the radial direction. The model is used to investigate the effect of imposing three different kinds of radial temperature profiles viz. linear, parabolic and exponential with fixed values of inner and outer surface temperatures, on the creep stresses and strain rates. It is noticed that by increasing the temperature exponent (nT), the radial stress (over the entire radius) and tangential stress (near the inner radius) increase in the disc.… More >

  • Open Access

    ARTICLE

    Rupture and Instability of Soft Films due to Moisture Vaporization in Microelectronic Devices

    Linsen Zhu1, Jiang Zhou2, Xuejun Fan2

    CMC-Computers, Materials & Continua, Vol.39, No.2, pp. 113-134, 2014, DOI:10.3970/cmc.2014.039.113

    Abstract In this paper, a damage mechanics-based continuum theory is developed for the coupled analysis of moisture vaporization, moisture absorption and desorption, heat conduction, and mechanical stress for a reflow process in microelectronic devices. The extremely compliant film has been used in wafer level lamination process. Such a soft film experiences cohesive rupture subjected to moisture absorption during reflow. The numerical simulation results have demonstrated that vapor pressure due to moisture vaporization is the dominant driving force for the failures. The correlation between the vapor pressure evolution and the film rupture observed from the experiments have… More >

  • Open Access

    ARTICLE

    IVUS-Based Computational Modeling and Planar Biaxial Artery Material Properties for Human Coronary Plaque Vulnerability Assessment

    Molecular & Cellular Biomechanics, Vol.9, No.1, pp. 77-94, 2012, DOI:10.3970/mcb.2012.009.077

    Abstract Image-based computational modeling has been introduced for vulnerable atherosclerotic plaques to identify critical mechanical conditions which may be used for better plaque assessment and rupture predictions. In vivo patient-specific coronary plaque models are lagging due to limitations on non-invasive image resolution, flow data, and vessel material properties. A framework is proposed to combine intravascular ultrasound (IVUS) imaging, biaxial mechanical testing and computational modeling with fluid-structure interactions and anisotropic material properties to acquire better and more complete plaque data and make more accurate plaque vulnerability assessment and predictions. Impact of pre-shrink-stretch process, vessel curvature and high More >

  • Open Access

    ABSTRACT

    Intravascular Ultrasound (IVUS)-Based Computational Modeling and Planar Biaxial Artery Material Properties for Human Coronary Plaque Vulnerability Assessment

    Mingchao Cai, Chun Yang, Mehmet H. Kural, Richard Bach, David Muccigrosso, Deshan Yang, Jie Zheng, Kristen L. Billiar, Dalin Tang

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.19, No.4, pp. 97-104, 2011, DOI:10.3970/icces.2011.019.097

    Abstract Image-based computational modeling has been introduced for vulnerable atherosclerotic plaques to identify critical mechanical conditions which may be used for better risk assessment and rupture predictions. In vivo patient-specific coronary plaque models are lagging due to limitations on non-invasive image resolution, flow data, and vessel material properties. We propose a procedure where intravascular ultrasound (IVUS) imaging, biaxial mechanical testing and computational modeling are combined together to acquire better and more complete plaque data and make more accurate plaque vulnerability assessment and predictions. More >

  • Open Access

    ABSTRACT

    The energy localization by the rupture propagation

    I.A. Miklashevich1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.15, No.4, pp. 145-152, 2010, DOI:10.3970/icces.2010.015.145

    Abstract The simple analytical model for the energy flux by the earthquake is proposed. The energy flux can be evaluated through the Umov-Pointing vector by the rupture propagation in media. Discontinuity of vector components is found. This discontinuity cause the change of an energy flow direction and localization of the energy field. More >

Displaying 11-20 on page 2 of 27. Per Page