Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (19)
  • Open Access

    ARTICLE

    A Scalable Double-Chain Storage Module for Blockchain

    Hui Han1,2, Wunan Wan1,2,*, Jinquan Zhang1,2, Zhi Qin1,2, Xiaofang Qiu1,2, Shibin Zhang1,2, Jinyue Xia3

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 2651-2662, 2022, DOI:10.32604/cmc.2022.028607

    Abstract With the growing maturity of blockchain technology, its peer-to-peer model and fully duplicated data storage pattern enable blockchain to act as a distributed ledger in untrustworthy environments. Blockchain storage has also become a research hotspot in industry, finance, and academia due to its security, and its unique data storage management model is gradually becoming a key technology to play its value in various fields’ applications. However, with the increasing amount of data written into the blockchain, the blockchain system faces many problems in its actual implementation of the application, such as high storage space occupation, low data flexibility and availability,… More >

  • Open Access

    ARTICLE

    Traffic Engineering in Dynamic Hybrid Segment Routing Networks

    Yingya Guo1,2,3,7, Kai Huang1, Cheng Hu4,*, Jiangyuan Yao5, Siyu Zhou6

    CMC-Computers, Materials & Continua, Vol.68, No.1, pp. 655-670, 2021, DOI:10.32604/cmc.2021.016364

    Abstract The emergence of Segment Routing (SR) provides a novel routing paradigm that uses a routing technique called source packet routing. In SR architecture, the paths that the packets choose to route on are indicated at the ingress router. Compared with shortest-path-based routing in traditional distributed routing protocols, SR can realize a flexible routing by implementing an arbitrary flow splitting at the ingress router. Despite the advantages of SR, it may be difficult to update the existing IP network to a full SR deployed network, for economical and technical reasons. Updating partial of the traditional IP network to the SR network,… More >

  • Open Access

    ARTICLE

    A Reliable and Scalable Internet of Military Things Architecture

    Omar Said1,3, Amr Tolba2,3,*

    CMC-Computers, Materials & Continua, Vol.67, No.3, pp. 3887-3906, 2021, DOI:10.32604/cmc.2021.016076

    Abstract Recently, Internet of Things (IoT) technology has provided logistics services to many disciplines such as agriculture, industry, and medicine. Thus, it has become one of the most important scientific research fields. Applying IoT to military domain has many challenges such as fault tolerance and QoS. In this paper, IoT technology is applied on the military field to create an Internet of Military Things (IoMT) system. Here, the architecture of the aforementioned IoMT system is proposed. This architecture consists of four main layers: Communication, information, application, and decision support. These layers provided a fault tolerant coverage communication system for IoMT things.… More >

  • Open Access

    ARTICLE

    Scalable Skin Lesion Multi-Classification Recognition System

    Fan Liu1, Jianwei Yan2, Wantao Wang2, Jian Liu2, *, Junying Li3, Alan Yang4

    CMC-Computers, Materials & Continua, Vol.62, No.2, pp. 801-816, 2020, DOI:10.32604/cmc.2020.07039

    Abstract Skin lesion recognition is an important challenge in the medical field. In this paper, we have implemented an intelligent classification system based on convolutional neural network. First of all, this system can classify whether the input image is a dermascopic image with an accuracy of 99%. And then diagnose the dermoscopic image and the non-skin mirror image separately. Due to the limitation of the data, we can only realize the recognition of vitiligo by non-skin mirror. We propose a vitiligo recognition based on the probability average of three structurally identical CNN models. The method is more efficient and robust than… More >

  • Open Access

    ARTICLE

    On Multi-Thread Crawler Optimization for Scalable Text Searching

    Guang Sun1, Huanxin Xiang2, Shuanghu Li1,*

    Journal on Big Data, Vol.1, No.2, pp. 89-106, 2019, DOI:10.32604/jbd.2019.07235

    Abstract Web crawlers are an important part of modern search engines. With the development of the times, data has exploded and humans have entered a “big data era”. For example, Wikipedia carries the knowledge from all over the world, records the real-time news that occurs every day, and provides users with a good database of data, but because of the large amount of data, it puts a lot of pressure on users to search. At present, single-threaded crawling data can no longer meet the requirements of text crawling. In order to improve the performance and program versatility of single-threaded crawlers, a… More >

  • Open Access

    ARTICLE

    A Scalable Approach for Fraud Detection in Online E-Commerce Transactions with Big Data Analytics

    Hangjun Zhou1,2,*, Guang Sun1,3, Sha Fu1, Wangdong Jiang1, Juan Xue1

    CMC-Computers, Materials & Continua, Vol.60, No.1, pp. 179-192, 2019, DOI:10.32604/cmc.2019.05214

    Abstract With the rapid development of mobile Internet and finance technology, online e-commerce transactions have been increasing and expanding very fast, which globally brings a lot of convenience and availability to our life, but meanwhile, chances of committing frauds also come in all shapes and sizes. Moreover, fraud detection in online e-commerce transactions is not totally the same to that in the existing areas due to the massive amounts of data generated in e-commerce, which makes the fraudulent transactions more covertly scattered with genuine transactions than before. In this article, a novel scalable and comprehensive approach for fraud detection in online… More >

  • Open Access

    ARTICLE

    A Scalable Method of Maintaining Order Statistics for Big Data Stream

    Zhaohui Zhang*,1,2,3, Jian Chen1, Ligong Chen1, Qiuwen Liu1, Lijun Yang1, Pengwei Wang1,2,3, Yongjun Zheng4

    CMC-Computers, Materials & Continua, Vol.60, No.1, pp. 117-132, 2019, DOI:10.32604/cmc.2019.05325

    Abstract Recently, there are some online quantile algorithms that work on how to analyze the order statistics about the high-volume and high-velocity data stream, but the drawback of these algorithms is not scalable because they take the GK algorithm as the subroutine, which is not known to be mergeable. Another drawback is that they can’t maintain the correctness, which means the error will increase during the process of the window sliding. In this paper, we use a novel data structure to store the sketch that maintains the order statistics over sliding windows. Therefore three algorithms have been proposed based on the… More >

  • Open Access

    ARTICLE

    Scalable Electromagnetic Simulation Environment

    Raju R. Namburu1, Eric R. Mark, Jerry A. Clarke

    CMES-Computer Modeling in Engineering & Sciences, Vol.5, No.5, pp. 443-454, 2004, DOI:10.3970/cmes.2004.005.443

    Abstract Computational electromagnetic (CEM) simulations of full-range military vehicles play a critical role in enhancing the survivability and target recognition of combat systems. Modeling of full-range military systems subjected to high frequencies may involve generating large-scale meshes, solving equations, visualization, and analysis of results in the range of billions of unknowns or grid points. Hence, the overall objective of this research is to develop and demonstrate a scalable CEM software environment to address accurate prediction of radar cross sections (RCS) for full- range armored vehicles with realistic material treatments and complex geometric configurations. A software environment consisting of scalable preprocessing, postprocessing,… More >

  • Open Access

    ARTICLE

    A Scalable Meshless Formulation Based on RBF Hermitian Interpolation for 3D Nonlinear Heat Conduction Problems

    David Stevens1, Henry Power1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.55, No.2, pp. 111-146, 2010, DOI:10.3970/cmes.2010.055.111

    Abstract Problems involving nonlinear time-dependent heat conduction in materials which have temperature-dependent thermal properties are solved with a novel meshless numerical solution technique using multiquadric radial basis functions (RBFs). Unlike traditional RBF collocation methods, the local Hermitian interpolation (LHI) method examined here can be scaled to arbitrarily large problems without numerical ill-conditioning or computational cost issues, due to the presence of small overlapping interpolation systems which grow in number but not in size as the global dataset grows. The flexibility of the full-domain multiquadric collocation method to directly interpolate arbitrary boundary conditions is maintained, via the local interpolations. The Kirchhoff transformation… More >

Displaying 11-20 on page 2 of 19. Per Page