Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (447)
  • Open Access

    ARTICLE

    SwinHCAD: A Robust Multi-Modality Segmentation Model for Brain Tumors Using Transformer and Channel-Wise Attention

    Seyong Jin1, Muhammad Fayaz2, L. Minh Dang3, Hyoung-Kyu Song3, Hyeonjoon Moon2,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-23, 2026, DOI:10.32604/cmc.2025.070667 - 10 November 2025

    Abstract Brain tumors require precise segmentation for diagnosis and treatment plans due to their complex morphology and heterogeneous characteristics. While MRI-based automatic brain tumor segmentation technology reduces the burden on medical staff and provides quantitative information, existing methodologies and recent models still struggle to accurately capture and classify the fine boundaries and diverse morphologies of tumors. In order to address these challenges and maximize the performance of brain tumor segmentation, this research introduces a novel SwinUNETR-based model by integrating a new decoder block, the Hierarchical Channel-wise Attention Decoder (HCAD), into a powerful SwinUNETR encoder. The HCAD… More >

  • Open Access

    REVIEW

    Deep Learning for Brain Tumor Segmentation and Classification: A Systematic Review of Methods and Trends

    Ameer Hamza, Robertas Damaševičius*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-41, 2026, DOI:10.32604/cmc.2025.069721 - 10 November 2025

    Abstract This systematic review aims to comprehensively examine and compare deep learning methods for brain tumor segmentation and classification using MRI and other imaging modalities, focusing on recent trends from 2022 to 2025. The primary objective is to evaluate methodological advancements, model performance, dataset usage, and existing challenges in developing clinically robust AI systems. We included peer-reviewed journal articles and high-impact conference papers published between 2022 and 2025, written in English, that proposed or evaluated deep learning methods for brain tumor segmentation and/or classification. Excluded were non-open-access publications, books, and non-English articles. A structured search was… More >

  • Open Access

    ARTICLE

    Deep Learning-Based Toolkit Inspection: Object Detection and Segmentation in Assembly Lines

    Arvind Mukundan1,2, Riya Karmakar1, Devansh Gupta3, Hsiang-Chen Wang1,4,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-23, 2026, DOI:10.32604/cmc.2025.069646 - 10 November 2025

    Abstract Modern manufacturing processes have become more reliant on automation because of the accelerated transition from Industry 3.0 to Industry 4.0. Manual inspection of products on assembly lines remains inefficient, prone to errors and lacks consistency, emphasizing the need for a reliable and automated inspection system. Leveraging both object detection and image segmentation approaches, this research proposes a vision-based solution for the detection of various kinds of tools in the toolkit using deep learning (DL) models. Two Intel RealSense D455f depth cameras were arranged in a top down configuration to capture both RGB and depth images… More >

  • Open Access

    ARTICLE

    Intelligent Semantic Segmentation with Vision Transformers for Aerial Vehicle Monitoring

    Moneerah Alotaibi*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-20, 2026, DOI:10.32604/cmc.2025.069195 - 10 November 2025

    Abstract Advanced traffic monitoring systems encounter substantial challenges in vehicle detection and classification due to the limitations of conventional methods, which often demand extensive computational resources and struggle with diverse data acquisition techniques. This research presents a novel approach for vehicle classification and recognition in aerial image sequences, integrating multiple advanced techniques to enhance detection accuracy. The proposed model begins with preprocessing using Multiscale Retinex (MSR) to enhance image quality, followed by Expectation-Maximization (EM) Segmentation for precise foreground object identification. Vehicle detection is performed using the state-of-the-art YOLOv10 framework, while feature extraction incorporates Maximally Stable Extremal… More >

  • Open Access

    ARTICLE

    GLMCNet: A Global-Local Multiscale Context Network for High-Resolution Remote Sensing Image Semantic Segmentation

    Yanting Zhang1, Qiyue Liu1,2, Chuanzhao Tian1,2,*, Xuewen Li1, Na Yang1, Feng Zhang1, Hongyue Zhang3

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-25, 2026, DOI:10.32604/cmc.2025.068403 - 10 November 2025

    Abstract High-resolution remote sensing images (HRSIs) are now an essential data source for gathering surface information due to advancements in remote sensing data capture technologies. However, their significant scale changes and wealth of spatial details pose challenges for semantic segmentation. While convolutional neural networks (CNNs) excel at capturing local features, they are limited in modeling long-range dependencies. Conversely, transformers utilize multihead self-attention to integrate global context effectively, but this approach often incurs a high computational cost. This paper proposes a global-local multiscale context network (GLMCNet) to extract both global and local multiscale contextual information from HRSIs.… More >

  • Open Access

    ARTICLE

    Channel-Attention DenseNet with Dilated Convolutions for MRI Brain Tumor Classification

    Abdu Salam1, Mohammad Abrar2, Raja Waseem Anwer3, Farhan Amin4,*, Faizan Ullah5, Isabel de la Torre6,*, Gerardo Mendez Mezquita7, Henry Fabian Gongora7

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2457-2479, 2025, DOI:10.32604/cmes.2025.072765 - 26 November 2025

    Abstract Brain tumors pose significant diagnostic challenges due to their diverse types and complex anatomical locations. Due to the increase in precision image-based diagnostic tools, driven by advancements in artificial intelligence (AI) and deep learning, there has been potential to improve diagnostic accuracy, especially with Magnetic Resonance Imaging (MRI). However, traditional state-of-the-art models lack the sensitivity essential for reliable tumor identification and segmentation. Thus, our research aims to enhance brain tumor diagnosis in MRI by proposing an advanced model. The proposed model incorporates dilated convolutions to optimize the brain tumor segmentation and classification. The proposed model… More >

  • Open Access

    ARTICLE

    Automatic Potential Safety Hazard Detection for High-Speed Railroad Surrounding Environment Using Lightweight Hybrid Dual Tasks Architecture

    Zheda Zhao, Tao Xu, Tong Yang, Yunpeng Wu*, Fengxiang Guo*

    Structural Durability & Health Monitoring, Vol.19, No.6, pp. 1457-1472, 2025, DOI:10.32604/sdhm.2025.069611 - 17 November 2025

    Abstract Utilizing unmanned aerial vehicle (UAV) photography to timely detect and evaluate potential safety hazards (PSHs) around high-speed rail has great potential to complement and reform the existing manual inspections by providing better overhead views and mitigating safety issues. However, UAV inspections based on manual interpretation, which heavily rely on the experience, attention, and judgment of human inspectors, still inevitably suffer from subjectivity and inaccuracy. To address this issue, this study proposes a lightweight hybrid learning algorithm named HDTA (hybrid dual tasks architecture) to automatically and efficiently detect the PSHs of UAV imagery. First, this HDTA… More >

  • Open Access

    ARTICLE

    Segmentation of Building Surface Cracks by Incorporating Attention Mechanism and Dilation-Wise Residual

    Yating Xu1, Mansheng Xiao1,*, Mengxing Gao1, Zhenzhen Liu1, Zeyu Xiao2

    Structural Durability & Health Monitoring, Vol.19, No.6, pp. 1635-1656, 2025, DOI:10.32604/sdhm.2025.068822 - 17 November 2025

    Abstract During the operation, maintenance and upkeep of concrete buildings, surface cracks are often regarded as important warning signs of potential damage. Their precise segmentation plays a key role in assessing the health of a building. Traditional manual inspection is subjective, inefficient and has safety hazards. In contrast, current mainstream computer vision–based crack segmentation methods still suffer from missed detections, false detections, and segmentation discontinuities. These problems are particularly evident when dealing with small cracks, complex backgrounds, and blurred boundaries. For this reason, this paper proposes a lightweight building surface crack segmentation method, HL-YOLO, based on… More >

  • Open Access

    ARTICLE

    Leveraging Segmentation for Potato Plant Disease Severity Estimation and Classification via CBAM-EfficientNetB0 Transfer Learning

    Amit Prakash Singh1, Kajal Kaul1,*, Anuradha Chug1, Ravinder Kumar2, Veerubommu Shanmugam2

    Journal on Artificial Intelligence, Vol.7, pp. 451-468, 2025, DOI:10.32604/jai.2025.070773 - 06 November 2025

    Abstract In agricultural farms in India where the staple diet for most of the households is potato, plant leaf diseases, namely Potato Early Blight (PEB) and Potato Late Blight (PLB), are quite common. The class label Plant Healthy (PH) is also used. If these diseases are not identified early, they can cause massive crop loss and thereby incur huge economic losses to the farmers in the agricultural domain and can impact the gross domestic product of the nation. This paper presents a hybrid approach for potato plant disease severity estimation and classification of diseased and healthy… More >

  • Open Access

    ARTICLE

    RPMS-DSAUnet: A Segmentation Model for the Pancreas in Abdominal CT Images

    Tiren Huang, Chong Luo, Xu Li*

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 5847-5865, 2025, DOI:10.32604/cmc.2025.067986 - 23 October 2025

    Abstract Automatic pancreas segmentation in CT scans is crucial for various medical applications including early disease detection, treatment planning and therapeutic evaluation. However, the pancreas’s small size, irregular morphology, and low contrast with surrounding tissues make accurate pancreas segmentation still a challenging task. To address these challenges, we propose a novel RPMS-DSAUnet for accurate automatic pancreas segmentation in abdominal CT images. First, a Residual Pyramid Squeeze Attention module enabling hierarchical multi-resolution feature extraction with dynamic feature weighting and selective feature reinforcement capabilities is integrated into the backbone network, enhancing pancreatic feature extraction and improving localization accuracy.… More >

Displaying 1-10 on page 1 of 447. Per Page