Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (412)
  • Open Access

    ARTICLE

    Multi-Stage Hierarchical Feature Extraction for Efficient 3D Medical Image Segmentation

    Jion Kim, Jayeon Kim, Byeong-Seok Shin*

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 5429-5443, 2025, DOI:10.32604/cmc.2025.063815 - 19 May 2025

    Abstract Research has been conducted to reduce resource consumption in 3D medical image segmentation for diverse resource-constrained environments. However, decreasing the number of parameters to enhance computational efficiency can also lead to performance degradation. Moreover, these methods face challenges in balancing global and local features, increasing the risk of errors in multi-scale segmentation. This issue is particularly pronounced when segmenting small and complex structures within the human body. To address this problem, we propose a multi-stage hierarchical architecture composed of a detector and a segmentor. The detector extracts regions of interest (ROIs) in a 3D image, while More >

  • Open Access

    ARTICLE

    CFH-Net: Transformer-Based Unstructured Road-Free Space Detection Network

    Jingcheng Yang1, Lili Fan2, Hongmei Liu1,*

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 4725-4740, 2025, DOI:10.32604/cmc.2025.062963 - 19 May 2025

    Abstract With the advancement of deep learning in the automotive domain, more and more researchers are focusing on autonomous driving. Among these tasks, free space detection is particularly crucial. Currently, many model-based approaches have achieved autonomous driving on well-structured urban roads, but these efforts primarily focus on urban road environments. In contrast, there are fewer deep learning methods specifically designed for off-road traversable area detection, and their effectiveness is not yet satisfactory. This is because detecting traversable areas in complex outdoor environments poses significant challenges, and current methods often rely on single-image inputs, which do not… More >

  • Open Access

    ARTICLE

    Teeth YOLACT: An Instance Segmentation Model Based on Impacted Tooth Panoramic X-Ray Images

    Tao Zhou1,2, Yaxing Wang1,2,*, Huiling Lu3, Wenwen Chai1,2, Yunfeng Pan1,2, Zhe Zhang1,2

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 4815-4834, 2025, DOI:10.32604/cmc.2025.062400 - 19 May 2025

    Abstract The instance segmentation of impacted teeth in the oral panoramic X-ray images is hotly researched. However, due to the complex structure, low contrast, and complex background of teeth in panoramic X-ray images, the task of instance segmentation is technically tricky. In this study, the contrast between impacted Teeth and periodontal tissues such as gingiva, periodontal membrane, and alveolar bone is low, resulting in fuzzy boundaries of impacted teeth. A model based on Teeth YOLACT is proposed to provide a more efficient and accurate solution for the segmentation of impacted teeth in oral panoramic X-ray films.… More >

  • Open Access

    ARTICLE

    An Ultralytics YOLOv8-Based Approach for Road Detection in Snowy Environments in the Arctic Region of Norway

    Aqsa Rahim*, Fuqing Yuan, Javad Barabady

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 4411-4428, 2025, DOI:10.32604/cmc.2025.061575 - 19 May 2025

    Abstract In recent years, advancements in autonomous vehicle technology have accelerated, promising safer and more efficient transportation systems. However, achieving fully autonomous driving in challenging weather conditions, particularly in snowy environments, remains a challenge. Snow-covered roads introduce unpredictable surface conditions, occlusions, and reduced visibility, that require robust and adaptive path detection algorithms. This paper presents an enhanced road detection framework for snowy environments, leveraging Simple Framework for Contrastive Learning of Visual Representations (SimCLR) for Self-Supervised pretraining, hyperparameter optimization, and uncertainty-aware object detection to improve the performance of You Only Look Once version 8 (YOLOv8). The model… More >

  • Open Access

    ARTICLE

    UltraSegNet: A Hybrid Deep Learning Framework for Enhanced Breast Cancer Segmentation and Classification on Ultrasound Images

    Suhaila Abuowaida1,*, Hamza Abu Owida2, Deema Mohammed Alsekait3,*, Nawaf Alshdaifat4, Diaa Salama AbdElminaam5,6, Mohammad Alshinwan4

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 3303-3333, 2025, DOI:10.32604/cmc.2025.063470 - 16 April 2025

    Abstract Segmenting a breast ultrasound image is still challenging due to the presence of speckle noise, dependency on the operator, and the variation of image quality. This paper presents the UltraSegNet architecture that addresses these challenges through three key technical innovations: This work adds three things: (1) a changed ResNet-50 backbone with sequential 3 convolutions to keep fine anatomical details that are needed for finding lesion boundaries; (2) a computationally efficient regional attention mechanism that works on high-resolution features without using a transformer’s extra memory; and (3) an adaptive feature fusion strategy that changes local and… More >

  • Open Access

    ARTICLE

    Two-Stage Category-Guided Frequency Modulation for Few-Shot Semantic Segmentation

    Yiming Tang*, Yanqiu Chen

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 1707-1726, 2025, DOI:10.32604/cmc.2025.062412 - 16 April 2025

    Abstract Semantic segmentation of novel object categories with limited labeled data remains a challenging problem in computer vision. Few-shot segmentation methods aim to address this problem by recognizing objects from specific target classes with a few provided examples. Previous approaches for few-shot semantic segmentation typically represent target classes using class prototypes. These prototypes are matched with the features of the query set to get segmentation results. However, class prototypes are usually obtained by applying global average pooling on masked support images. Global pooling discards much structural information, which may reduce the accuracy of model predictions. To… More >

  • Open Access

    ARTICLE

    Entropy-Bottleneck-Based Privacy Protection Mechanism for Semantic Communication

    Kaiyang Han1, Xiaoqiang Jia1, Yangfei Lin2, Tsutomu Yoshinaga2, Yalong Li2, Jiale Wu2,*

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 2971-2988, 2025, DOI:10.32604/cmc.2025.061563 - 16 April 2025

    Abstract With the rapid development of artificial intelligence and the Internet of Things, along with the growing demand for privacy-preserving transmission, the need for efficient and secure communication systems has become increasingly urgent. Traditional communication methods transmit data at the bit level without considering its semantic significance, leading to redundant transmission overhead and reduced efficiency. Semantic communication addresses this issue by extracting and transmitting only the most meaningful semantic information, thereby improving bandwidth efficiency. However, despite reducing the volume of data, it remains vulnerable to privacy risks, as semantic features may still expose sensitive information. To… More >

  • Open Access

    ARTICLE

    Automatic Pancreas Segmentation in CT Images Using EfficientNetV2 and Multi-Branch Structure

    Panru Liang1, Guojiang Xin1,*, Xiaolei Yi2, Hao Liang3, Changsong Ding1

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 2481-2504, 2025, DOI:10.32604/cmc.2025.060961 - 16 April 2025

    Abstract Automatic pancreas segmentation plays a pivotal role in assisting physicians with diagnosing pancreatic diseases, facilitating treatment evaluations, and designing surgical plans. Due to the pancreas’s tiny size, significant variability in shape and location, and low contrast with surrounding tissues, achieving high segmentation accuracy remains challenging. To improve segmentation precision, we propose a novel network utilizing EfficientNetV2 and multi-branch structures for automatically segmenting the pancreas from CT images. Firstly, an EfficientNetV2 encoder is employed to extract complex and multi-level features, enhancing the model’s ability to capture the pancreas’s intricate morphology. Then, a residual multi-branch dilated attention… More >

  • Open Access

    ARTICLE

    CG-FCLNet: Category-Guided Feature Collaborative Learning Network for Semantic Segmentation of Remote Sensing Images

    Min Yao1,*, Guangjie Hu1, Yaozu Zhang2

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 2751-2771, 2025, DOI:10.32604/cmc.2025.060860 - 16 April 2025

    Abstract Semantic segmentation of remote sensing images is a critical research area in the field of remote sensing. Despite the success of Convolutional Neural Networks (CNNs), they often fail to capture inter-layer feature relationships and fully leverage contextual information, leading to the loss of important details. Additionally, due to significant intra-class variation and small inter-class differences in remote sensing images, CNNs may experience class confusion. To address these issues, we propose a novel Category-Guided Feature Collaborative Learning Network (CG-FCLNet), which enables fine-grained feature extraction and adaptive fusion. Specifically, we design a Feature Collaborative Learning Module (FCLM)… More >

  • Open Access

    ARTICLE

    A Nature-Inspired AI Framework for Accurate Glaucoma Diagnosis

    Jahanzaib Latif 1, Ahsan Wajahat1, Alishba Tahir2, Anas Bilal3,*, Mohammed Zakariah4, Abeer Alnuaim4

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 539-567, 2025, DOI:10.32604/cmes.2025.062301 - 11 April 2025

    Abstract Glaucoma, a leading cause of blindness, demands early detection for effective management. While AI-based diagnostic systems are gaining traction, their performance is often limited by challenges such as varying image backgrounds, pixel intensity inconsistencies, and object size variations. To address these limitations, we introduce an innovative, nature-inspired machine learning framework combining feature excitation-based dense segmentation networks (FEDS-Net) and an enhanced gray wolf optimization-supported support vector machine (IGWO-SVM). This dual-stage approach begins with FEDS-Net, which utilizes a fuzzy integral (FI) technique to accurately segment the optic cup (OC) and optic disk (OD) from retinal images, even More >

Displaying 1-10 on page 1 of 412. Per Page