Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (12)
  • Open Access

    ARTICLE

    H/V Spectral Ratio Reveals Seismic Response of Base-Isolated Large-Span High-Rise in Beijing

    Zhangdi Xie1,2,*, Cantao Zhuang1, Yong Wu1, Linghui Niu1, Jianming Zhao3

    Structural Durability & Health Monitoring, Vol.20, No.1, 2026, DOI:10.32604/sdhm.2025.070531 - 08 January 2026

    Abstract This study employed tri-component continuous monitoring data from 10 measurement points on both sides of a base isolation layer in the basement of a large-span high-rise building in Beijing, as well as from a free-field station and roof frame, during a Mw 5.5 magnitude earthquake in Pingyuan, Shandong, in 2023. The H/V spectral ratio method was used to evaluate the structural dynamic response characteristics of the building and analyze the regulatory effect of the base-isolation layer on seismic waves. The results indicate that during the earthquake, the peak frequency of the free-field and the measurement points… More >

  • Open Access

    ARTICLE

    Dynamic Response of Bridge Pile Foundations under Pile-Soil-Fault Interaction in Seismic Areas

    Yujie Li1, Zhongju Feng1,*, Fuchun Wang1, Jiang Guan2, Xiaoqian Ma3

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.2, pp. 1549-1573, 2025, DOI:10.32604/cmes.2025.064785 - 30 May 2025

    Abstract To study the dynamic response rules of pile foundations of mega-bridges over faults in strong seismic areas, a finite element model of the pile foundation-soil-fault interaction of the Haiwen Bridge is established. The 0.2–0.6 g peak acceleration of the 5010 seismic waves is input to study the effect of the seismic wave of different intensities and the distance changes between the fault and the pile foundation on the dynamic response of the pile body. The results show that the soil layer covering the bedrock amplifies the peak pile acceleration, and the amplifying effect decreases with… More >

  • Open Access

    ARTICLE

    Influence of Confined Concrete Models on the Seismic Response of RC Frames

    Hüseyin Bilgin*, Bredli Plaku

    Structural Durability & Health Monitoring, Vol.18, No.3, pp. 197-222, 2024, DOI:10.32604/sdhm.2024.048645 - 15 May 2024

    Abstract In this study, the influence of confined concrete models on the response of reinforced concrete structures is investigated at member and global system levels. The commonly encountered concrete models such as Modified Kent-Park, Saatçioğlu-Razvi, and Mander are considered. Two moment-resisting frames designed according to the pre-modern code are taken into consideration to reflect the example of an RC moment-resisting frame in the current building stock. The building is in an earthquake-prone zone located on Z3 Soil Type. The inelastic response of the building frame is modelled by considering the plastic hinges formed on each beam… More >

  • Open Access

    ARTICLE

    Numerical Simulation of the Seismic Response of a Horizontal Storage Tank Based on a SPH–FEM Coupling Method

    Peilei Yan1,2,*, Endong Guo1,2, Houli Wu1,2, Liangchao Zhang1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 1655-1678, 2024, DOI:10.32604/cmes.2023.044760 - 29 January 2024

    Abstract A coupled numerical calculation method combining smooth particle hydrodynamics (SPH) and the finite element method (FEM) was implemented to investigate the seismic response of horizontal storage tanks. A numerical model of a horizontal storage tank featuring a free liquid surface under seismic action was constructed using the SPH–FEM coupling method. The stored liquid was discretized using SPH particles, while the tank and supports were discretized using the FEM. The interaction between the stored liquid and the tank was simulated by using the meshless particle contact method. Then, the numerical simulation results were compared and analyzed… More >

  • Open Access

    PROCEEDINGS

    Nonlinear Vibration Analysis of Horizontal Bi-Directional Restoring Force Characteristics for Seismic Isolated Laminated Rubber

    Ayumi Takahashi1,*, Kenya Kashiwagi2, Tomoyuki Tsuchiya2, Kazuhito Misaji1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.24, No.1, pp. 1-1, 2022, DOI:10.32604/icces.2022.08705

    Abstract As a characteristic of seismic isolated laminated rubber, the rubber is torsional deformed when it was loaded in horizontal bi-direction, and breaks with less force than when loaded in unidirectional. It is necessary to extend the model which has been used for unidirectional analysis to the model which can be analyzed in bi-direction. As a previous study, Igarashi applied the Multiple Shear Springs (MSS) model which is a horizontal bi-directional model, and compared them with measured values to verify their validity [1]. The authors extended PFT-ELS method to MSS model which can analyze bidirection [2].… More >

  • Open Access

    ARTICLE

    Effect of Lead-Rubber Bearing Isolators in Reducing Seismic Damage for a High-Rise Building in Comparison with Normal Shear Wall System

    Mahmoud Fakih1,*, Jaafar Hallal1, Hassan Darwich2, Hala Damerji3

    Structural Durability & Health Monitoring, Vol.15, No.3, pp. 247-260, 2021, DOI:10.32604/sdhm.2021.015174 - 07 September 2021

    Abstract Seismic earthquakes are a real danger for the construction evolution of high rise buildings. The rate of earthquakes around the world is noteworthy in a wide range of construction areas. In this study, we present the dynamic behavior of a high-rise RC building with dynamic isolators (lead-rubber-bearing), in comparison with a traditional shear wall system of the same building. Seismic isolation has been introduced in building construction to increase the structural stability and to protect the non-structural components against the damaging effects of an earthquake. In order to clarify the influence of incorporating lead rubber… More >

  • Open Access

    ABSTRACT

    Nonlinear Vibration Analysis of Seismic-isolation Laminated Rubber Considering Bi-directional Restoring Force Model

    Ayumi Takahashi1,*, Tomoyuki Tsuchiya2, Keiichi Motoyama3, Kazuhito Misaji1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.23, No.1, pp. 15-15, 2021, DOI:10.32604/icces.2021.08354

    Abstract The seismic-isolation laminated rubber is used as a means of suppressing damage to the structures caused by an earthquake. To design the seismically isolated structure, it is important to calculate the dynamic response reflecting the rubbers characteristics accurately. The authors have applied the nonlinear vibration analysis method using the restoring force model of the power function type to the seismic response analysis of seismic isolation rubber in horizontal unidirectional [1-3]. However, when seismic isolation laminated rubber is loaded in horizontal bi-direction, the seismic isolation laminated rubber is torsional deformed and breaks with less force than… More >

  • Open Access

    ARTICLE

    Identification of Parameters in 2D-FEM of Valve Piping System within NPP Utilizing Seismic Response

    Ruiyuan Xue1, Shurong Yu1, *, Xiheng Zhang1

    CMC-Computers, Materials & Continua, Vol.65, No.1, pp. 789-805, 2020, DOI:10.32604/cmc.2020.011340 - 23 July 2020

    Abstract Nuclear power plants (NPP) contain plenty of valve piping systems (VPS’s) which are categorized into high anti-seismic grades. Tasks such as seismic qualification, health monitoring and damage diagnosis of VPS’s in its design and operation processes all depend on finite element method. However, in engineering practice, there is always deviations between the theoretical and the measured responses due to the inaccurate value of the structural parameters in the model. The structure parameters identification of VPS within NPP is still an unexplored domain to a large extent. In this paper, the initial 2Dfinite element model (FEM)… More >

  • Open Access

    ABSTRACT

    Seismic Response Analysis of a High-Rise-Building with Seismic Isolation Rubber

    A. Takahashi1, K. Motoyama2, K. Misaji1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.21, No.2, pp. 42-42, 2019, DOI:10.32604/icces.2019.05446

    Abstract Seismic isolation laminated rubber is used as an effective means for suppressing damage to buildings and people in buildings by earthquakes. The restoring-force characteristic of the rubber has non-linerar-vibration characteristics which depend on the displacement amplitude. PFT-ELS (Equivalent linear system using the restoring force model of power function type) has been applied for calculating approximate responses of various non-linear-vibration systems [Kazuhito, M., et al. (1994); Koichi, S., et al. (1995); Koichi, S., et al. (1996)]. The authors have also applied to optimize the non-linear vibration characteristics of the isolation rubber using PFT-ELS and GA [Ayumi,… More >

  • Open Access

    ARTICLE

    Rotational Friction Damper’s Performance for Controlling Seismic Response of High Speed Railway Bridge-Track System

    Wei Guo1,2, Chen Zeng1,2, Hongye Gou3,*, Yao Hu1,2, Hengchao Xu4, Longlong Guo1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.120, No.3, pp. 491-515, 2019, DOI:10.32604/cmes.2019.06162

    Abstract CRTS-II slab ballastless track on bridge is a unique system in China high speed railway. The application of longitudinal continuous track system has obviously changed dynamic characteristics of bridge structure. The bridge system and CRTS-II track system form a complex nonlinear system. To investigate the seismic response of high speed railway (HSR) simply supported bridge-track system, nonlinear models of three-span simply supported bridge with piers of different height and CRTS-II slab ballastless track system are established. By seismic analysis, it is found that shear alveolar in CRTS-II track system is more prone to be damaged… More >

Displaying 1-10 on page 1 of 12. Per Page