Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    A Model for Predicting the Erosion Rate Induced by the Use of a Selective Catalytic Reduction Denitrification Technology in Cement Kilns Flue Gas

    Yihua Gao1, Fuping Qian2,*, Yi Sun2, Yue Wu2, Shenghua Wu2, Jinli Lu1, Yunlong Han1, Naijin Huang3

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.8, pp. 1997-2011, 2023, DOI:10.32604/fdmp.2023.026373

    Abstract Selective catalytic reduction (SCR) is a technology by which nitrogen oxides are converted with the aid of a catalyst into diatomic nitrogen and water. It is known that the catalyst can be easily eroded if a cement kiln with a high-dust content is considered. To understand this process, numerical simulations have been carried out considering a single catalyst channel in order to study the collision and erosion of fly ash and catalysts at meso scale. Based on a response surface methodology, the effects of five factors on the erosion rate have been studied, namely, the catalyst particle velocity, the particle… More > Graphic Abstract

    A Model for Predicting the Erosion Rate Induced by the Use of a Selective Catalytic Reduction Denitrification Technology in Cement Kilns Flue Gas

  • Open Access

    ARTICLE

    Influence of Steam and Sulfide on High Temperature Selective Catalytic Reduction

    Jiyuan Zhang1, Linbo Wang1, Chengqiang Zhang1, Shuzhan Bai2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.3, pp. 615-621, 2020, DOI:10.32604/fdmp.2020.09654

    Abstract The influences of steam and sulfide on the efficiency of NOx reduction using ammonia (NH3) over the nanometer-class V-W/Ti catalyst in conditions of high temperature is experimentally investigated using a steady-flow reactor. The results showed that selective catalytic reduction (SCR) is inhibited by H2O at low temperature, but higher NO conversion efficiency is achieved at high temperature since the reaction of NH3 oxidized by O2 to NOx is inhibited by H2O. The activity of SCR is promoted by SO2 in the temperature range of 200~500° C, the NO conversion efficiency was improved to 98% from 94% by adding SO2. SCR… More >

Displaying 1-10 on page 1 of 2. Per Page