Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (42)
  • Open Access

    ARTICLE

    TransSSA: Invariant Cue Perceptual Feature Focused Learning for Dynamic Fruit Target Detection

    Jianyin Tang, Zhenglin Yu*, Changshun Shao

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 2829-2850, 2025, DOI:10.32604/cmc.2025.063287 - 16 April 2025

    Abstract In the field of automated fruit harvesting, precise and efficient fruit target recognition and localization play a pivotal role in enhancing the efficiency of harvesting robots. However, this domain faces two core challenges: firstly, the dynamic nature of the automatic picking process requires fruit target detection algorithms to adapt to multi-view characteristics, ensuring effective recognition of the same fruit from different perspectives. Secondly, fruits in natural environments often suffer from interference factors such as overlapping, occlusion, and illumination fluctuations, which increase the difficulty of image capture and recognition. To address these challenges, this study conducted… More >

  • Open Access

    ARTICLE

    Deep Learning Algorithm for Person Re-Identification Based on Dual Network Architecture

    Meng Zhu1,2, Xingyue Wang3, Honge Ren3,4,*, Abeer Hakeem5, Linda Mohaisen5,*

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 2889-2905, 2025, DOI:10.32604/cmc.2025.061421 - 16 April 2025

    Abstract Changing a person’s posture and low resolution are the key challenges for person re-identification (ReID) in various deep learning applications. In this paper, we introduce an innovative architecture using a dual attention network that includes an attention module and a joint measurement module of spatial-temporal information. The proposed approach can be classified into two main tasks. Firstly, the spatial attention feature map is formed by aggregating features in the spatial dimension. Additionally, the same operation is carried out on the channel dimension to form channel attention feature maps. Therefore, the receptive field size is adjusted… More >

  • Open Access

    ARTICLE

    TMRE: Novel Algorithm for Computing Daily Reference Evapotranspiration Using Transformer-Based Models

    Bushra Tayyaba1, Muhammad Usman Ghani Khan1,2,3, Talha Waheed2, Shaha Al-Otaibi4, Tanzila Saba3,*

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 2851-2864, 2025, DOI:10.32604/cmc.2025.060365 - 16 April 2025

    Abstract Reference Evapotranspiration (ETo) is widely used to assess total water loss between land and atmosphere due to its importance in maintaining the atmospheric water balance, especially in agricultural and environmental management. Accurate estimation of ETo is challenging due to its dependency on multiple climatic variables, including temperature, humidity, and solar radiation, making it a complex multivariate time-series problem. Traditional machine learning and deep learning models have been applied to forecast ETo, achieving moderate success. However, the introduction of transformer-based architectures in time-series forecasting has opened new possibilities for more precise ETo predictions. In this study,… More >

  • Open Access

    ARTICLE

    A Transformer Based on Feedback Attention Mechanism for Diagnosis of Coronary Heart Disease Using Echocardiographic Images

    Chunlai Du1,#, Xin Gu1,#, Yanhui Guo2,*, Siqi Guo3, Ziwei Pang3, Yi Du3, Guoqing Du3,*

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 3435-3450, 2025, DOI:10.32604/cmc.2025.060212 - 16 April 2025

    Abstract Coronary artery disease is a highly lethal cardiovascular condition, making early diagnosis crucial for patients. Echocardiograph is employed to identify coronary heart disease (CHD). However, due to issues such as fuzzy object boundaries, complex tissue structures, and motion artifacts in ultrasound images, it is challenging to detect CHD accurately. This paper proposes an improved Transformer model based on the Feedback Self-Attention Mechanism (FSAM) for classification of ultrasound images. The model enhances attention weights, making it easier to capture complex features. Experimental results show that the proposed method achieves high levels of accuracy, recall, precision, F1 More >

  • Open Access

    ARTICLE

    MLRT-UNet: An Efficient Multi-Level Relation Transformer Based U-Net for Thyroid Nodule Segmentation

    Kaku Haribabu1,*, Prasath R1, Praveen Joe IR2

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 413-448, 2025, DOI:10.32604/cmes.2025.059406 - 11 April 2025

    Abstract Thyroid nodules, a common disorder in the endocrine system, require accurate segmentation in ultrasound images for effective diagnosis and treatment. However, achieving precise segmentation remains a challenge due to various factors, including scattering noise, low contrast, and limited resolution in ultrasound images. Although existing segmentation models have made progress, they still suffer from several limitations, such as high error rates, low generalizability, overfitting, limited feature learning capability, etc. To address these challenges, this paper proposes a Multi-level Relation Transformer-based U-Net (MLRT-UNet) to improve thyroid nodule segmentation. The MLRT-UNet leverages a novel Relation Transformer, which processes… More >

  • Open Access

    ARTICLE

    A Novel Dynamic Residual Self-Attention Transfer Adaptive Learning Fusion Approach for Brain Tumor Diagnosis

    Tawfeeq Shawly1, Ahmed A. Alsheikhy2,*

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4161-4179, 2025, DOI:10.32604/cmc.2025.061497 - 06 March 2025

    Abstract A healthy brain is vital to every person since the brain controls every movement and emotion. Sometimes, some brain cells grow unexpectedly to be uncontrollable and cancerous. These cancerous cells are called brain tumors. For diagnosed patients, their lives depend mainly on the early diagnosis of these tumors to provide suitable treatment plans. Nowadays, Physicians and radiologists rely on Magnetic Resonance Imaging (MRI) pictures for their clinical evaluations of brain tumors. These evaluations are time-consuming, expensive, and require expertise with high skills to provide an accurate diagnosis. Scholars and industrials have recently partnered to implement… More >

  • Open Access

    ARTICLE

    Image Copy-Move Forgery Detection and Localization Method Based on Sequence-to-Sequence Transformer Structure

    Gang Hao, Peng Liang*, Ziyuan Li, Huimin Zhao, Hong Zhang

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 5221-5238, 2025, DOI:10.32604/cmc.2025.055739 - 06 March 2025

    Abstract In recent years, the detection of image copy-move forgery (CMFD) has become a critical challenge in verifying the authenticity of digital images, particularly as image manipulation techniques evolve rapidly. While deep convolutional neural networks (DCNNs) have been widely employed for CMFD tasks, they are often hindered by a notable limitation: the progressive reduction in spatial resolution during the encoding process, which leads to the loss of critical image details. These details are essential for the accurate detection and localization of image copy-move forgery. To overcome the limitations of existing methods, this paper proposes a Transformer-based… More >

  • Open Access

    ARTICLE

    EFI-SATL: An EfficientNet and Self-Attention Based Biometric Recognition for Finger-Vein Using Deep Transfer Learning

    Manjit Singh, Sunil Kumar Singla*

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.3, pp. 3003-3029, 2025, DOI:10.32604/cmes.2025.060863 - 03 March 2025

    Abstract Deep Learning-based systems for Finger vein recognition have gained rising attention in recent years due to improved efficiency and enhanced security. The performance of existing CNN-based methods is limited by the puny generalization of learned features and deficiency of the finger vein image training data. Considering the concerns of existing methods, in this work, a simplified deep transfer learning-based framework for finger-vein recognition is developed using an EfficientNet model of deep learning with a self-attention mechanism. Data augmentation using various geometrical methods is employed to address the problem of training data shortage required for a… More > Graphic Abstract

    EFI-SATL: An EfficientNet and Self-Attention Based Biometric Recognition for Finger-Vein Using Deep Transfer Learning

  • Open Access

    ARTICLE

    MSSTGCN: Multi-Head Self-Attention and Spatial-Temporal Graph Convolutional Network for Multi-Scale Traffic Flow Prediction

    Xinlu Zong*, Fan Yu, Zhen Chen, Xue Xia

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 3517-3537, 2025, DOI:10.32604/cmc.2024.057494 - 17 February 2025

    Abstract Accurate traffic flow prediction has a profound impact on modern traffic management. Traffic flow has complex spatial-temporal correlations and periodicity, which poses difficulties for precise prediction. To address this problem, a Multi-head Self-attention and Spatial-Temporal Graph Convolutional Network (MSSTGCN) for multiscale traffic flow prediction is proposed. Firstly, to capture the hidden traffic periodicity of traffic flow, traffic flow is divided into three kinds of periods, including hourly, daily, and weekly data. Secondly, a graph attention residual layer is constructed to learn the global spatial features across regions. Local spatial-temporal dependence is captured by using a More >

  • Open Access

    ARTICLE

    SEFormer: A Lightweight CNN-Transformer Based on Separable Multiscale Depthwise Convolution and Efficient Self-Attention for Rotating Machinery Fault Diagnosis

    Hongxing Wang1, Xilai Ju2, Hua Zhu1,*, Huafeng Li1,*

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 1417-1437, 2025, DOI:10.32604/cmc.2024.058785 - 03 January 2025

    Abstract Traditional data-driven fault diagnosis methods depend on expert experience to manually extract effective fault features of signals, which has certain limitations. Conversely, deep learning techniques have gained prominence as a central focus of research in the field of fault diagnosis by strong fault feature extraction ability and end-to-end fault diagnosis efficiency. Recently, utilizing the respective advantages of convolution neural network (CNN) and Transformer in local and global feature extraction, research on cooperating the two have demonstrated promise in the field of fault diagnosis. However, the cross-channel convolution mechanism in CNN and the self-attention calculations in… More > Graphic Abstract

    SEFormer: A Lightweight CNN-Transformer Based on Separable Multiscale Depthwise Convolution and Efficient Self-Attention for Rotating Machinery Fault Diagnosis

Displaying 1-10 on page 1 of 42. Per Page