Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (21)
  • Open Access

    ARTICLE

    NFHP-RN: A Method of Few-Shot Network Attack Detection Based on the Network Flow Holographic Picture-ResNet

    Tao Yi1,3, Xingshu Chen1,2,*, Mingdong Yang3, Qindong Li1, Yi Zhu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 929-955, 2024, DOI:10.32604/cmes.2024.048793

    Abstract Due to the rapid evolution of Advanced Persistent Threats (APTs) attacks, the emergence of new and rare attack samples, and even those never seen before, make it challenging for traditional rule-based detection methods to extract universal rules for effective detection. With the progress in techniques such as transfer learning and meta-learning, few-shot network attack detection has progressed. However, challenges in few-shot network attack detection arise from the inability of time sequence flow features to adapt to the fixed length input requirement of deep learning, difficulties in capturing rich information from original flow in the case of insufficient samples, and the… More >

  • Open Access

    ARTICLE

    BCCLR: A Skeleton-Based Action Recognition with Graph Convolutional Network Combining Behavior Dependence and Context Clues

    Yunhe Wang1, Yuxin Xia2, Shuai Liu2,*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 4489-4507, 2024, DOI:10.32604/cmc.2024.048813

    Abstract In recent years, skeleton-based action recognition has made great achievements in Computer Vision. A graph convolutional network (GCN) is effective for action recognition, modelling the human skeleton as a spatio-temporal graph. Most GCNs define the graph topology by physical relations of the human joints. However, this predefined graph ignores the spatial relationship between non-adjacent joint pairs in special actions and the behavior dependence between joint pairs, resulting in a low recognition rate for specific actions with implicit correlation between joint pairs. In addition, existing methods ignore the trend correlation between adjacent frames within an action and context clues, leading to… More >

  • Open Access

    ARTICLE

    Missing Value Imputation for Radar-Derived Time-Series Tracks of Aerial Targets Based on Improved Self-Attention-Based Network

    Zihao Song, Yan Zhou*, Wei Cheng, Futai Liang, Chenhao Zhang

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3349-3376, 2024, DOI:10.32604/cmc.2024.047034

    Abstract The frequent missing values in radar-derived time-series tracks of aerial targets (RTT-AT) lead to significant challenges in subsequent data-driven tasks. However, the majority of imputation research focuses on random missing (RM) that differs significantly from common missing patterns of RTT-AT. The method for solving the RM may experience performance degradation or failure when applied to RTT-AT imputation. Conventional autoregressive deep learning methods are prone to error accumulation and long-term dependency loss. In this paper, a non-autoregressive imputation model that addresses the issue of missing value imputation for two common missing patterns in RTT-AT is proposed. Our model consists of two… More >

  • Open Access

    ARTICLE

    Intelligent Fault Diagnosis Method of Rolling Bearings Based on Transfer Residual Swin Transformer with Shifted Windows

    Haomiao Wang1, Jinxi Wang2, Qingmei Sui2,*, Faye Zhang2, Yibin Li1, Mingshun Jiang2, Phanasindh Paitekul3

    Structural Durability & Health Monitoring, Vol.18, No.2, pp. 91-110, 2024, DOI:10.32604/sdhm.2023.041522

    Abstract Due to their robust learning and expression ability for complex features, the deep learning (DL) model plays a vital role in bearing fault diagnosis. However, since there are fewer labeled samples in fault diagnosis, the depth of DL models in fault diagnosis is generally shallower than that of DL models in other fields, which limits the diagnostic performance. To solve this problem, a novel transfer residual Swin Transformer (RST) is proposed for rolling bearings in this paper. RST has 24 residual self-attention layers, which use the hierarchical design and the shifted window-based residual self-attention. Combined with transfer learning techniques, the… More >

  • Open Access

    ARTICLE

    Detecting APT-Exploited Processes through Semantic Fusion and Interaction Prediction

    Bin Luo1,2,3, Liangguo Chen1,2,3, Shuhua Ruan1,2,3,*, Yonggang Luo2,3,*

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 1731-1754, 2024, DOI:10.32604/cmc.2023.045739

    Abstract Considering the stealthiness and persistence of Advanced Persistent Threats (APTs), system audit logs are leveraged in recent studies to construct system entity interaction provenance graphs to unveil threats in a host. Rule-based provenance graph APT detection approaches require elaborate rules and cannot detect unknown attacks, and existing learning-based approaches are limited by the lack of available APT attack samples or generally only perform graph-level anomaly detection, which requires lots of manual efforts to locate attack entities. This paper proposes an APT-exploited process detection approach called ThreatSniffer, which constructs the benign provenance graph from attack-free audit logs, fits normal system entity… More >

  • Open Access

    ARTICLE

    CFSA-Net: Efficient Large-Scale Point Cloud Semantic Segmentation Based on Cross-Fusion Self-Attention

    Jun Shu1,2, Shuai Wang1,2, Shiqi Yu1,2, Jie Zhang3,*

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 2677-2697, 2023, DOI:10.32604/cmc.2023.045818

    Abstract Traditional models for semantic segmentation in point clouds primarily focus on smaller scales. However, in real-world applications, point clouds often exhibit larger scales, leading to heavy computational and memory requirements. The key to handling large-scale point clouds lies in leveraging random sampling, which offers higher computational efficiency and lower memory consumption compared to other sampling methods. Nevertheless, the use of random sampling can potentially result in the loss of crucial points during the encoding stage. To address these issues, this paper proposes cross-fusion self-attention network (CFSA-Net), a lightweight and efficient network architecture specifically designed for directly processing large-scale point clouds.… More >

  • Open Access

    ARTICLE

    Liver Tumor Segmentation Based on Multi-Scale and Self-Attention Mechanism

    Fufang Li, Manlin Luo*, Ming Hu, Guobin Wang, Yan Chen

    Computer Systems Science and Engineering, Vol.47, No.3, pp. 2835-2850, 2023, DOI:10.32604/csse.2023.039765

    Abstract Liver cancer has the second highest incidence rate among all types of malignant tumors, and currently, its diagnosis heavily depends on doctors’ manual labeling of CT scan images, a process that is time-consuming and susceptible to subjective errors. To address the aforementioned issues, we propose an automatic segmentation model for liver and tumors called Res2Swin Unet, which is based on the Unet architecture. The model combines Attention-Res2 and Swin Transformer modules for liver and tumor segmentation, respectively. Attention-Res2 merges multiple feature map parts with an Attention gate via skip connections, while Swin Transformer captures long-range dependencies and models the input… More >

  • Open Access

    ARTICLE

    An Intrusion Detection Scheme Based on Federated Learning and Self-Attention Fusion Convolutional Neural Network for IoT

    Jie Deng1, Ran Guo2, Zilong Jin1,3,*

    Journal on Internet of Things, Vol.4, No.3, pp. 141-153, 2022, DOI:10.32604/jiot.2022.038914

    Abstract Traditional based deep learning intrusion detection methods face problems such as insufficient cloud storage, data privacy leaks, high communication costs, unsatisfactory detection rates, and false positive rate. To address existing issues in intrusion detection, this paper presents a novel approach called CS-FL, which combines Federated Learning and a Self-Attention Fusion Convolutional Neural Network. Federated Learning is a new distributed computing model that enables individual training of client data without uploading local data to a central server. at the same time, local training results are uploaded and integrated across all participating clients to produce a global model. The sharing model reduces… More >

  • Open Access

    ARTICLE

    MVCE-Net: Multi-View Region Feature and Caption Enhancement Co-Attention Network for Visual Question Answering

    Feng Yan1, Wushouer Silamu2, Yanbing Li1,*

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 65-80, 2023, DOI:10.32604/cmc.2023.038177

    Abstract Visual question answering (VQA) requires a deep understanding of images and their corresponding textual questions to answer questions about images more accurately. However, existing models tend to ignore the implicit knowledge in the images and focus only on the visual information in the images, which limits the understanding depth of the image content. The images contain more than just visual objects, some images contain textual information about the scene, and slightly more complex images contain relationships between individual visual objects. Firstly, this paper proposes a model using image description for feature enhancement. This model encodes images and their descriptions separately… More >

  • Open Access

    ARTICLE

    3D Object Detection with Attention: Shell-Based Modeling

    Xiaorui Zhang1,2,3,4,*, Ziquan Zhao1, Wei Sun4,5, Qi Cui6

    Computer Systems Science and Engineering, Vol.46, No.1, pp. 537-550, 2023, DOI:10.32604/csse.2023.034230

    Abstract LIDAR point cloud-based 3D object detection aims to sense the surrounding environment by anchoring objects with the Bounding Box (BBox). However, under the three-dimensional space of autonomous driving scenes, the previous object detection methods, due to the pre-processing of the original LIDAR point cloud into voxels or pillars, lose the coordinate information of the original point cloud, slow detection speed, and gain inaccurate bounding box positioning. To address the issues above, this study proposes a new two-stage network structure to extract point cloud features directly by PointNet++, which effectively preserves the original point cloud coordinate information. To improve the detection… More >

Displaying 1-10 on page 1 of 21. Per Page