Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (48)
  • Open Access

    ARTICLE

    DGConv: A Novel Convolutional Neural Network Approach for Weld Seam Depth Image Detection

    Pengchao Li1,2,3,*, Fang Xu1,2,3,4, Jintao Wang1,2, Haibing Guo4, Mingmin Liu4, Zhenjun Du4

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 1755-1771, 2024, DOI:10.32604/cmc.2023.047057 - 27 February 2024

    Abstract We propose a novel image segmentation algorithm to tackle the challenge of limited recognition and segmentation performance in identifying welding seam images during robotic intelligent operations. Initially, to enhance the capability of deep neural networks in extracting geometric attributes from depth images, we developed a novel deep geometric convolution operator (DGConv). DGConv is utilized to construct a deep local geometric feature extraction module, facilitating a more comprehensive exploration of the intrinsic geometric information within depth images. Secondly, we integrate the newly proposed deep geometric feature module with the Fully Convolutional Network (FCN8) to establish a… More >

  • Open Access

    ARTICLE

    Enhanced Wolf Pack Algorithm (EWPA) and Dense-kUNet Segmentation for Arterial Calcifications in Mammograms

    Afnan M. Alhassan*

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2207-2223, 2024, DOI:10.32604/cmc.2024.046427 - 27 February 2024

    Abstract Breast Arterial Calcification (BAC) is a mammographic decision dissimilar to cancer and commonly observed in elderly women. Thus identifying BAC could provide an expense, and be inaccurate. Recently Deep Learning (DL) methods have been introduced for automatic BAC detection and quantification with increased accuracy. Previously, classification with deep learning had reached higher efficiency, but designing the structure of DL proved to be an extremely challenging task due to overfitting models. It also is not able to capture the patterns and irregularities presented in the images. To solve the overfitting problem, an optimal feature set has… More >

  • Open Access

    ARTICLE

    CFSA-Net: Efficient Large-Scale Point Cloud Semantic Segmentation Based on Cross-Fusion Self-Attention

    Jun Shu1,2, Shuai Wang1,2, Shiqi Yu1,2, Jie Zhang3,*

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 2677-2697, 2023, DOI:10.32604/cmc.2023.045818 - 26 December 2023

    Abstract Traditional models for semantic segmentation in point clouds primarily focus on smaller scales. However, in real-world applications, point clouds often exhibit larger scales, leading to heavy computational and memory requirements. The key to handling large-scale point clouds lies in leveraging random sampling, which offers higher computational efficiency and lower memory consumption compared to other sampling methods. Nevertheless, the use of random sampling can potentially result in the loss of crucial points during the encoding stage. To address these issues, this paper proposes cross-fusion self-attention network (CFSA-Net), a lightweight and efficient network architecture specifically designed for… More >

  • Open Access

    ARTICLE

    A Lightweight Road Scene Semantic Segmentation Algorithm

    Jiansheng Peng1,2,*, Qing Yang1, Yaru Hou1

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 1929-1948, 2023, DOI:10.32604/cmc.2023.043524 - 29 November 2023

    Abstract In recent years, with the continuous deepening of smart city construction, there have been significant changes and improvements in the field of intelligent transportation. The semantic segmentation of road scenes has important practical significance in the fields of automatic driving, transportation planning, and intelligent transportation systems. However, the current mainstream lightweight semantic segmentation models in road scene segmentation face problems such as poor segmentation performance of small targets and insufficient refinement of segmentation edges. Therefore, this article proposes a lightweight semantic segmentation model based on the LiteSeg model improvement to address these issues. The model… More >

  • Open Access

    ARTICLE

    Intelligent Traffic Surveillance through Multi-Label Semantic Segmentation and Filter-Based Tracking

    Asifa Mehmood Qureshi1, Nouf Abdullah Almujally2, Saud S. Alotaibi3, Mohammed Hamad Alatiyyah4, Jeongmin Park5,*

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 3707-3725, 2023, DOI:10.32604/cmc.2023.040738 - 08 October 2023

    Abstract Road congestion, air pollution, and accident rates have all increased as a result of rising traffic density and worldwide population growth. Over the past ten years, the total number of automobiles has increased significantly over the world. In this paper, a novel method for intelligent traffic surveillance is presented. The proposed model is based on multilabel semantic segmentation using a random forest classifier which classifies the images into five classes. To improve the results, mean-shift clustering was applied to the segmented images. Afterward, the pixels given the label for the vehicle were extracted and blob… More >

  • Open Access

    ARTICLE

    3D Kronecker Convolutional Feature Pyramid for Brain Tumor Semantic Segmentation in MR Imaging

    Kainat Nazir1, Tahir Mustafa Madni1, Uzair Iqbal Janjua1, Umer Javed2, Muhammad Attique Khan3, Usman Tariq4, Jae-Hyuk Cha5,*

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 2861-2877, 2023, DOI:10.32604/cmc.2023.039181 - 08 October 2023

    Abstract Brain tumor significantly impacts the quality of life and changes everything for a patient and their loved ones. Diagnosing a brain tumor usually begins with magnetic resonance imaging (MRI). The manual brain tumor diagnosis from the MRO images always requires an expert radiologist. However, this process is time-consuming and costly. Therefore, a computerized technique is required for brain tumor detection in MRI images. Using the MRI, a novel mechanism of the three-dimensional (3D) Kronecker convolution feature pyramid (KCFP) is used to segment brain tumors, resolving the pixel loss and weak processing of multi-scale lesions. A… More >

  • Open Access

    ARTICLE

    Point Cloud Based Semantic Segmentation Method for Unmanned Shuttle Bus

    Sidong Wu, Cuiping Duan, Bufan Ren, Liuquan Ren, Tao Jiang, Jianying Yuan*, Jiajia Liu, Dequan Guo

    Intelligent Automation & Soft Computing, Vol.37, No.3, pp. 2707-2726, 2023, DOI:10.32604/iasc.2023.038948 - 11 September 2023

    Abstract The complexity of application scenarios and the enormous volume of point cloud data make it difficult to quickly and effectively segment the scenario only based on the point cloud. In this paper, to address the semantic segmentation for safety driving of unmanned shuttle buses, an accurate and effective point cloud-based semantic segmentation method is proposed for specified scenarios (such as campus). Firstly, we analyze the characteristic of the shuttle bus scenarios and propose to use ROI selection to reduce the total points in computation, and then propose an improved semantic segmentation model based on Cylinder3D,… More >

  • Open Access

    ARTICLE

    An Improved High Precision 3D Semantic Mapping of Indoor Scenes from RGB-D Images

    Jing Xin1,*, Kenan Du1, Jiale Feng1, Mao Shan2

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.3, pp. 2621-2640, 2023, DOI:10.32604/cmes.2023.027467 - 03 August 2023

    Abstract This paper proposes an improved high-precision 3D semantic mapping method for indoor scenes using RGB-D images. The current semantic mapping algorithms suffer from low semantic annotation accuracy and insufficient real-time performance. To address these issues, we first adopt the Elastic Fusion algorithm to select key frames from indoor environment image sequences captured by the Kinect sensor and construct the indoor environment space model. Then, an indoor RGB-D image semantic segmentation network is proposed, which uses multi-scale feature fusion to quickly and accurately obtain object labeling information at the pixel level of the spatial point cloud More >

  • Open Access

    ARTICLE

    RO-SLAM: A Robust SLAM for Unmanned Aerial Vehicles in a Dynamic Environment

    Jingtong Peng*

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 2275-2291, 2023, DOI:10.32604/csse.2023.039272 - 28 July 2023

    Abstract When applied to Unmanned Aerial Vehicles (UAVs), existing Simultaneous Localization and Mapping (SLAM) algorithms are constrained by several factors, notably the interference of dynamic outdoor objects, the limited computing performance of UAVs, and the holes caused by dynamic objects removal in the map. We proposed a new SLAM system for UAVs in dynamic environments to solve these problems based on ORB-SLAM2. We have improved the Pyramid Scene Parsing Network (PSPNet) using Depthwise Separable Convolution to reduce the model parameters. We also incorporated an auxiliary loss function to supervise the hidden layer to enhance accuracy. Then… More >

  • Open Access

    ARTICLE

    A Hybrid Attention-Based Residual Unet for Semantic Segmentation of Brain Tumor

    Wajiha Rahim Khan1, Tahir Mustafa Madni1, Uzair Iqbal Janjua1, Umer Javed2, Muhammad Attique Khan3, Majed Alhaisoni4, Usman Tariq5, Jae-Hyuk Cha6,*

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 647-664, 2023, DOI:10.32604/cmc.2023.039188 - 08 June 2023

    Abstract Segmenting brain tumors in Magnetic Resonance Imaging (MRI) volumes is challenging due to their diffuse and irregular shapes. Recently, 2D and 3D deep neural networks have become famous for medical image segmentation because of the availability of labelled datasets. However, 3D networks can be computationally expensive and require significant training resources. This research proposes a 3D deep learning model for brain tumor segmentation that uses lightweight feature extraction modules to improve performance without compromising contextual information or accuracy. The proposed model, called Hybrid Attention-Based Residual Unet (HA-RUnet), is based on the Unet architecture and utilizes… More >

Displaying 11-20 on page 2 of 48. Per Page