Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (101)
  • Open Access

    ARTICLE

    Artificial Intelligence-Based Semantic Segmentation of Ocular Regions for Biometrics and Healthcare Applications

    Rizwan Ali Naqvi1, Dildar Hussain2, Woong-Kee Loh3,*

    CMC-Computers, Materials & Continua, Vol.66, No.1, pp. 715-732, 2021, DOI:10.32604/cmc.2020.013249 - 30 October 2020

    Abstract Multiple ocular region segmentation plays an important role in different applications such as biometrics, liveness detection, healthcare, and gaze estimation. Typically, segmentation techniques focus on a single region of the eye at a time. Despite the number of obvious advantages, very limited research has focused on multiple regions of the eye. Similarly, accurate segmentation of multiple eye regions is necessary in challenging scenarios involving blur, ghost effects low resolution, off-angles, and unusual glints. Currently, the available segmentation methods cannot address these constraints. In this paper, to address the accurate segmentation of multiple eye regions in… More >

  • Open Access

    ARTICLE

    Internet of Things in Healthcare: Architecture, Applications, Challenges, and Solutions

    Vankamamidi S. Naresh1,∗,†, Suryateja S. Pericherla2,‡, Pilla Sita Rama Murty3,§, Sivaranjani Reddi4,¶

    Computer Systems Science and Engineering, Vol.35, No.6, pp. 411-421, 2020, DOI:10.32604/csse.2020.35.411

    Abstract Healthcare, the largest global industry, is undergoing significant transformations with the genesis of a new technology known as the Internet of Things (IoT). Many healthcare leaders are investing more money for transforming their services to harness the benefits provided by IoT, thereby paving the way for the Internet of Medical Things (IoMT), an extensive collection of medical sensors and associated infrastructure. IoMT has many benefits like providing remote healthcare by monitoring health vitals of patients at a distant place, providing healthcare services to elderly people, and monitoring a large group of people in a region More >

  • Open Access

    ARTICLE

    State-Space Based Linear Modeling for Human Activity Recognition in Smart Space

    M. Humayun Kabir1, Keshav Thapa2, Jae-Young Yang2, Sung-HyunYang2

    Intelligent Automation & Soft Computing, Vol.25, No.4, pp. 673-681, 2019, DOI:10.31209/2018.100000035

    Abstract Recognition of human activity is a key element for building intelligent and pervasive environments. Inhabitants interact with several objects and devices while performing any activity. Interactive objects and devices convey information that can be essential factors for activity recognition. Using embedded sensors with devices or objects, it is possible to get object-use sequencing data. This approach does not create discomfort to the user than wearable sensors and has no impact or issue in terms of user privacy than image sensors. In this paper, we propose a linear model for activity recognition based on the state-space More >

  • Open Access

    ABSTRACT

    High Glucose Reduces the Shear Stress-Induced CD59 Expression on EPCs through F-Actin Alteration

    Na Liu1, Xiaoyun Zhang2, Yuzhen Ding2, Hong Li2, Xiumei Guan2, Min Cheng2,*, Xiaodong Cui2,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.1, pp. 87-87, 2019, DOI:10.32604/mcb.2019.05751

    Abstract Objective: Endothelial progenitor cells (EPCs) play a vital role in postnatal vascular injury and repair, especially vasculogenesis and angiogenesis. The purpose of this study was to investigate the effect of laminar shear stress in attenuating the decreased-expression of complement regulatory protein CD59 and the mechanism of cytoskeleton F-actin. Methods: EPCs were isolated from human umbilical vein blood and planted on glass slides, which applied to the laminar shear stress force (12 dyne/cm2) in a high glucose (20 mM) culture environment. The gene and protein expression of CD59 were detected by SYBGreen quantitative PCR and fluorescence activated… More >

  • Open Access

    ABSTRACT

    Buckling Detection Using Carbon Nanotube Reinforced Composite Sensors

    Enrique García-Macías1, Luis Rodríguez-Tembleque1, Felipe García-Sánchez2, Andrés Sáez1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.22, No.1, pp. 103-103, 2019, DOI:10.32604/icces.2019.05220

    Abstract Enhancing the strength-to-weight ratio in structural engineering has traditionally attracted great research efforts from both scientist and practicing engineers. Development of new composite materials and/or alternative structural configurations have led to slender designs, which may be prone to buckling failure. Meanwhile, the most recent advances in the field of Nanotechnology have allowed the development of new composite materials with not only low weight and adequate load-bearing capacity, but also additional self-sensing capabilities. Such multifunctional composites open a vast range of possibilities in the field of Structural Health Monitoring. In particular, this work analyzes-from a numerical… More >

  • Open Access

    ARTICLE

    High-g Shocking Testing of the Martlet Wireless Sensing System

    Xi Liu, Xinjun Dong, Yang Wang*, Jacob Dodson, Bryan Joyce

    Sound & Vibration, Vol.52, No.3, pp. 6-11, 2018, DOI:10.32604/sv.2018.03857

    Abstract This article reports the latest development of a wireless sensing system, named Martlet, on high-g shock acceleration measurement. The Martlet sensing node design is based on a Texas Instruments Piccolo microcontroller, with clock frequency programmable up to 90 MHz. The high clock frequency of the microcontroller enables Martlet to support high-frequency data acquisition and high-speed onboard computation. In addition, the extensible design of the Martlet node conveniently allows incorporation of multiple sensor boards. In this study, a high-g accelerometer interface board is developed to allow Martlet to work with the selected microelectromechanical system (MEMS) high-g accelerometers. Besides low-pass More >

  • Open Access

    ARTICLE

    Vapor and Pressure Sensors Based on Cellulose Nanofibers and Carbon Nanotubes Aerogel with Thermoelectric Properties

    Rajendran Muthuraj, Abhishek Sachan, Mickael Castro*, Jean-François Feller, Bastien Seantier*, Yves Grohens

    Journal of Renewable Materials, Vol.6, No.3, pp. 277-287, 2018, DOI:10.7569/JRM.2017.634182

    Abstract In this work, thermally insulating and electrically conductive aerogels were prepared from cellulose nanofibers (CNF) and carbon nanotubes (CNTs) by environmentally friendly freeze-drying process. The thermal conductivity of neat CNF aerogel is 24 mW/(m·K) with a density of 0.025 g/cm3. With the addition of CNTs into CNF aerogel, the electrical conductivity was significantly increased while the thermal conductivity was increased to 38 mW/(m·K). Due to these interesting properties, the Seebeck coefficient and the figure of merit (ZT) of the CNF/CNTs aerogels were measured and showed that CNF/CNTs aerogel thermoelectric properties can be improved. The compressibility More >

  • Open Access

    ARTICLE

    Paracetamol Sensitive Cellulose-Based Electrochemical Sensors

    Maxime Pontié1*, Serge Foukmeniok Mbokou1,2, Jean-Philippe Bouchara1, Bienvenue Razafimandimby1, Sylvie Egloff1, Ornella Dzilingomo1, Pierre-Yves Pontalier3, Ignas Kenfack Tonle<

    Journal of Renewable Materials, Vol.6, No.3, pp. 242-250, 2018, DOI:10.7569/JRM.2017.634169

    Abstract Electrochemical determination of paracetamol (PCT) was successfully performed using carbon paste electrodes (CPEs) modified with treated coffee husks (CHt) or cellulose powder (Ce). Scanning electron microscopy was used to characterize unmodified or modified CPEs prior to their use. The electrochemical oxidation of PCT was investigated using square wave voltammetry (SWV) and cyclic voltammetry (CV). The oxidation current density of PCT was two-fold higher with the CPE-CHt sensor and 30% higher with CPE-Ce in comparison with the unmodified CPE, and this correlated with the higher hydrophilicity of the modified electrodes. Using SWV for the electrochemical analysis… More >

  • Open Access

    REVIEW

    Nanocellulose-Enabled Electronics, Energy Harvesting Devices, Smart Materials and Sensors: A Review

    Ronald Sabo1*, Aleksey Yermakov2, Chiu Tai Law3, Rani Elhajjar4

    Journal of Renewable Materials, Vol.4, No.5, pp. 297-312, 2016, DOI:10.7569/JRM.2016.634114

    Abstract Cellulose nanomaterials have a number of interesting and unique properties that make them well-suited for use in electronics applications such as energy harvesting devices, actuators and sensors. Cellulose nanofibrils and nanocrystals have good mechanical properties, high transparency, and low coefficient of thermal expansion, among other properties that facilitate both active and inactive roles in electronics and related devices. For example, these nanomaterials have been demonstrated to operate as substrates for flexible electronics and displays, to improve the efficiency of photovoltaics, to work as a component of magnetostrictive composites and to act as a suitable lithium More >

  • Open Access

    ARTICLE

    Some Applications of Metamaterial Resonators Based on Symmetry Properties

    J. Naqui1, F. Martín1

    CMC-Computers, Materials & Continua, Vol.39, No.3, pp. 267-288, 2014, DOI:10.3970/cmc.2014.039.267

    Abstract Metamaterial resonators are electrically small resonant particles useful for the implementation of effective media metamaterials. In this paper, some applications of metamaterial resonators (such as the split ring resonator -SRR-, the complementary split ring resonator -CSRR-, the folded stepped impedance resonator -SIR-, and the electric LC resonator), that exploit the symmetry properties of transmission lines loaded with such symmetric particles, are reviewed. This covers differential (balanced) lines with common mode suppression, linear and angular displacement sensors (including alignment sensors), angular velocity sensors, and radiofrequency barcodes. Advantages and drawbacks as compared to existing implementations are also More >

Displaying 81-90 on page 9 of 101. Per Page