Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (6)
  • Open Access

    ARTICLE

    EFFECT OF GAS FLOW RATE ON SEPARATION EFFICIENCY AT DIFFERENT SCALING SCALES OF CYCLONE SEPARATORS

    Yangyang Tiana , Zhuo Chenb,* , Qi Zhuangc

    Frontiers in Heat and Mass Transfer, Vol.20, pp. 1-11, 2023, DOI:10.5098/hmt.20.26

    Abstract The cyclone separator has remarkable amplification effect, which is an important factor affecting its separation efficiency and pressure drop. The numerical simulation of Stairmand cyclone separators with cylinder diameters of 200, 280, 400, 480 and 600mm after geometric similarity amplification was carried out by ANSYS software. RSM model was used for gas phase and DPM model was used for particle phase. The results show that after the cyclone size is enlarged geometrically, the tangential velocity tends to increase with the increase of the cyclone barrel diameter at the same inlet gas velocity, which leads to the increase of turbulence energy… More >

  • Open Access

    ARTICLE

    Title Supersonic Condensation and Separation Characteristics of CO2-Rich Natural Gas under Different Pressures

    Yong Zheng1, Lei Zhao1, Yujiang Wang1, Feng Chang1, Weijia Dong2,*, Xinying Liu2, Yunfei Li2, Xiaohan Zhang2, Ziyuan Zhao3

    Energy Engineering, Vol.120, No.2, pp. 529-540, 2023, DOI:10.32604/ee.2023.022765

    Abstract Supersonic separation technology is a new natural gas sweetening method for the treatment of natural gas with high CO2 (carbon dioxide) content. The structures of the Laval nozzle and the supersonic separator were designed, and the mathematical models of supersonic condensation and swirling separation for CO2-CH4 mixture gas were established. The supersonic condensation characteristics of CO2 in natural gas and the separation characteristics of condensed droplets under different inlet pressures were studied. The results show that higher inlet pressure results in a larger droplet radius and higher liquid phase mass fraction; additionally, the influence of centrifugal force is more pronounced,… More >

  • Open Access

    ARTICLE

    Optimization of Control Loops and Operating Parameters for Three-Phase Separators Used in Oilfield Central Processing Facilities

    Zhenfeng Li, Yaqiao Li*, Guangjun Wei

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.3, pp. 635-649, 2023, DOI:10.32604/fdmp.2022.020633

    Abstract In this study, the Stokes formula is used to analyze the separation effect of three-phase separators used in a Oilfield Central Processing Facility. The considered main influencing factors include (but are not limited to) the typical size of oil and water droplets, the residence time and temperature of fluid and the dosage of demulsifier. Using the “Specification for Oil and Gas Separators” as a basis, the control loops and operating parameters of each separator are optimized Considering the Halfaya Oilfield as a testbed, it is shown that the proposed approach can lead to good results in the production stage. More >

  • Open Access

    ARTICLE

    Numerical Simulation of Turbulent Swirling Pipe Flow with an Internal Conical Bluff Body

    Jinli Song1, Nabil Kharoua2,*, Lyes Khezzar1, Mohamed Alshehhi1

    FDMP-Fluid Dynamics & Materials Processing, Vol.17, No.2, pp. 455-470, 2021, DOI:10.32604/fdmp.2021.014370

    Abstract Turbulent swirling flow inside a short pipe interacting with a conical bluff body was simulated using the commercial CFD code Fluent. The geometry used is a simplified version of a novel liquid/gas separator used in multiphase flow metering. Three turbulence models, belonging to the Reynolds averaged Navier-Stokes (RANS) equations framework, are used. These are, RNG k-ε, SST k-ω and the full Reynolds stress model (RSM) in their steady and unsteady versions. Steady and unsteady RSM simulations show similar behavior. Compared to other turbulence models, they yield the best predictions of the mean velocity profiles though they exhibit some discrepancies in… More >

  • Open Access

    ARTICLE

    Evaluations of Turbulence Models for Highly Swirling Flows in Cyclones

    I. Karagoz, F.Kaya

    CMES-Computer Modeling in Engineering & Sciences, Vol.43, No.2, pp. 111-130, 2009, DOI:10.3970/cmes.2009.043.111

    Abstract The aim of this work is to investigate the suitability of various turbulence models and their options for highly complex swirling flows in tangential inlet cyclones. Three-dimensional, steady governing equations for the incompressible, turbulent flow inside the cyclone are solved numerically. The prediction performance of three popular turbulence models and various options available for these models was evaluated by comparing the computed velocity profiles and pressure drop with the experimental data given in the literature. Results obtained from the numerical tests have demonstrated that the swirl factor for the RNG k-emodel has considerably influence on the prediction performance of the… More >

  • Open Access

    ARTICLE

    Parametric Study of Bubble Kinematic Behaviour in a Centrifugal Vacuum Separator

    Yuan Chen1, Honggang Duan1, Fei Yu1, Xingyu Zhao1, Han Xu1, Jun Gao1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.11, No.2, pp. 127-142, 2015, DOI:10.3970/fdmp.2015.011.127

    Abstract The dynamics of dispersed bubbles in a centrifugal separator are investigated with the aim to improve the efficiency of the system. The prototype separator consists of a rotor, a base, a diverting disc, a shaft, an oil trapping impeller, a central pipe, an inlet section for contaminated oil, an outlet section for purified oil and an air outlet. A hydrodynamic model is developed to predict the complex influence of parameters such as the centrifugal force and vacuum pressure. In particular, three different force models are selected to analyze the effect of the added mass and Basset forces (also including inertia,… More >

Displaying 1-10 on page 1 of 6. Per Page