Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    PROCEEDINGS

    A Shape Optimization Approach for 3D Doubly-Periodic Multi-Layered Systems

    Haibo Chen1,*, Fuhang Jiang1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.09414

    Abstract Acoustic wave propagation has been the subject of many studies in engineering and physics. Researchers have shown an increased interest in recent years in the acoustic scattering of periodic systems, such as phononic crystals and metamaterials [1]. These artificial periodic systems possess some particular acoustic characteristics including noise control, waveguides and negative refraction, which manifest excellent potential applicability in acoustic engineering. Based on the isogeometric acoustic boundary element method (BEM) [2], an efficient shape optimization approach is proposed in this research for threedimensional doubly-periodic multi-layered systems. The interfaces between different acoustic mediums are infinite doubly periodic surfaces, which can be… More >

  • Open Access

    ARTICLE

    Topological Shape Optimization of Electromagnetic Problems using Level Set Method and Radial Basis Function

    Hokyung Shim1, Vinh Thuy Tran Ho1,,Semyung Wang1,2, Daniel A. Tortorelli3

    CMES-Computer Modeling in Engineering & Sciences, Vol.37, No.2, pp. 175-202, 2008, DOI:10.3970/cmes.2008.037.175

    Abstract This paper presents a topological shape optimization technique for electromagnetic problems using a level set method and radial basis functions. The proposed technique is a level set (LS) based optimization dealing with geometrical shape derivatives and topological design. The shape derivative is computed by an adjoint variable method to avoid numerous sensitivity evaluations. A level set model embedded into the scalar function of higher dimensions is propagated to represent the design boundary of a domain. The level set function interpolated into a fixed initial domain is evolved by using the Hamilton-Jacobi equation. The moving free boundaries (dynamic interfaces) represented in… More >

Displaying 1-10 on page 1 of 2. Per Page