Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    A Combined Shape and Topology Optimization Based on Isogeometric Boundary Element Method for 3D Acoustics

    Jie Wang, Fuhang Jiang, Wenchang Zhao, Haibo Chen*

    CMES-Computer Modeling in Engineering & Sciences, Vol.127, No.2, pp. 645-681, 2021, DOI:10.32604/cmes.2021.015894

    Abstract A combined shape and topology optimization algorithm based on isogeometric boundary element method for 3D acoustics is developed in this study. The key treatment involves using adjoint variable method in shape sensitivity analysis with respect to non-uniform rational basis splines control points, and in topology sensitivity analysis with respect to the artificial densities of sound absorption material. OpenMP tool in Fortran code is adopted to improve the efficiency of analysis. To consider the features and efficiencies of the two types of optimization methods, this study adopts a combined iteration scheme for the optimization process to investigate the simultaneous change of… More >

  • Open Access

    ABSTRACT

    Three dimensional acoustic shape sensitivity analysis accelerated by fast multipole boundary element method

    C. J. ZHENG, H. B. CHEN, T. MATSUMOTO, T. TAKAHASHI

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.19, No.4, pp. 121-122, 2011, DOI:10.3970/icces.2011.019.121

    Abstract A fast multipole boundary element method is presented for three dimensional acoustic shape sensitivity analysis in this study. The Burton-Miller formula which is a linear combination of the conventional boundary integral equation and the normal derivative boundary integral equation is adopted to conquer the fictitious eigenfrequency problem associated with the conventional boundary integral equation method in solving exterior acoustic problems. The continuous adjoint variable method is implemented in the sensitivity analysis and the concept of material derivative is used in the derivation. Constant elements are employed to discretize the boundary so that the hypersingular boundary integrals contained in the formulae… More >

  • Open Access

    ABSTRACT

    Shape Sensitivity Analysis of Bioheat Transfer in the System Blood Vessel - Surrounding Tissue

    Bohdan Mochnacki1, Grażyna Kaluża2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.1, No.1, pp. 15-20, 2007, DOI:10.3970/icces.2007.001.015

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    Three Dimensional Acoustic Shape Sensitivity Analysis by Means of Adjoint Variable Method and Fast Multipole Boundary Element Approach

    C.J. Zheng1, H.B. Chen1, T. Matsumoto2, T. Takahashi2

    CMES-Computer Modeling in Engineering & Sciences, Vol.79, No.1, pp. 1-30, 2011, DOI:10.3970/cmes.2011.079.001

    Abstract A fast multipole boundary element approach to the shape sensitivity analysis of three dimensional acoustic wave problems is developed in this study based on the adjoint variable method. The concept of material derivative is employed in the derivation. The Burton-Miller formula which is a linear combination of the conventional and normal derivative boundary integral equations is adopted to cope with the non-uniqueness problem when solving exterior acoustic wave problems. Constant elements are used to discretize the boundary surface so that the strongly- and hyper-singular boundary integrals contained in the formulations can be evaluated explicitly and the numerical process can be… More >

Displaying 1-10 on page 1 of 4. Per Page