Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (194)
  • Open Access

    ARTICLE

    Design Optimization of a Conical Annular Centrifugal Contractor

    M. N. Noui-Mehidi1

    FDMP-Fluid Dynamics & Materials Processing, Vol.7, No.2, pp. 141-152, 2011, DOI:10.3970/fdmp.2011.007.141

    Abstract The present work is concerned with a numerical study of the performance of a conical annular centrifugal contractor through the analysis of the flow properties when the apex angle is changed for different imposed axial flows. The calculations revealed the advantage of using conical annular centrifugal contractors compared to the cylindrical annular centrifuges. The study is conducted by a comparison analysis of the hydrodynamics of fluid flow in both conical and cylindrical contractors where moderate axial flows are imposed. In both systems the outer body is stationary while the inner rotor is maintained at constant speed. The calculations are achieved… More >

  • Open Access

    ARTICLE

    Detailed Observations of Convective Instability on an Interfacial Salty Layer

    R. Abdeljabar1, F. Onofri2, M.J. Safi1

    FDMP-Fluid Dynamics & Materials Processing, Vol.4, No.4, pp. 245-254, 2008, DOI:10.3970/fdmp.2008.004.245

    Abstract This paper focuses on the mechanisms of convective instability in a stable salty gradient layer (i.e. an interfacial salty layer). This layer is assumed to be initially confined between two homogeneous liquid layers: a lower layer composed of salty water of 5wt% concentration and an upper layer composed of distilled water. The mechanisms underlying the interfacial salty layer's instability are depicted experimentally using a PIV technique and via measurements of concentration and temperature. It is found that in addition to the effect of double-diffusion across the interfacial salty layer, different forms of Kelvin-Helmholtz instability occur at different locations:\newline i. At… More >

  • Open Access

    ARTICLE

    Scalings for Droplet Sizes in Shear-Driven Breakup: Non-Microfluidic Ways to Monodisperse Emulsions

    V. Cristini1, Y. Renardy2

    FDMP-Fluid Dynamics & Materials Processing, Vol.2, No.2, pp. 77-94, 2006, DOI:10.3970/fdmp.2006.002.077

    Abstract We review studies of a drop of viscous liquid, suspended in another liquid, and undergoing breakup in an impulsively started shear flow. Stokes flow conditions as well as the effects of inertia are reported. They reveal a universal scaling for the fragments, which allows one to use sheared emulsions to produce monodispersity as an alternative to microfluidic devices. More >

  • Open Access

    ARTICLE

    Effects of Transverse Shear on Strain Stiffening of Biological Fiber Networks

    H. Jiang1,2, B. Yang1, S. Liu3

    CMC-Computers, Materials & Continua, Vol.38, No.2, pp. 61-77, 2013, DOI:10.3970/cmc.2013.038.061

    Abstract Actin, fibrin and collagen fiber networks are typical hierarchical biological materials formed by bundling fibrils into fibers and branching/adjoining fibers into networks. The bundled fibrils interact with each other through weak van der Waals forces and, in some cases, additional spotted covalent crosslinks. In the present work, we apply Timoshenko's beam theory that takes into account the effect of transverse shear between fibrils in each bundle to study the overall mechanical behaviors of such fiber networks. Previous experimental studies suggested that these fibers are initially loose bundles. Based on the evidence, it is hypothesized that the fibers undergo transitions from… More >

  • Open Access

    ARTICLE

    Regularized meshless method for antiplane piezoelectricity problems with multiple inclusions

    K.H. Chen1,2, J.H. Kao3, J.T. Chen4

    CMC-Computers, Materials & Continua, Vol.9, No.3, pp. 253-280, 2009, DOI:10.3970/cmc.2009.009.253

    Abstract In this paper, solving antiplane piezoelectricity problems with multiple inclusions are attended by using the regularized meshless method (RMM). This is made possible that the troublesome singularity in the MFS disappears by employing the subtracting and adding-back techniques. The governing equations for linearly electro-elastic medium are reduced to two uncoupled Laplace's equations. The representations of two solutions of the two uncoupled system are obtained by using the RMM. By matching interface conditions, the linear algebraic system is obtained. Finally, typical numerical examples are presented and discussed to demonstrate the accuracy of the solutions. More >

  • Open Access

    ARTICLE

    Eigen-vibrations of Plates made of Functionally Graded Material

    H. Altenbach1, V. A. Eremeyev2

    CMC-Computers, Materials & Continua, Vol.9, No.2, pp. 153-178, 2009, DOI:10.3970/cmc.2009.009.153

    Abstract Within the framework of the direct approach to the plate theory we consider natural oscillations of plates made of functionally graded materials taking into account both the rotatory inertia and the transverse shear stiffness. It is shown that in some cases the results based on the direct approach differ significantly from the classical estimates. The reason for this is the non-classical computation of the transverse shear stiffness. More >

  • Open Access

    ARTICLE

    Identification of Materials Properties with the Help of Miniature Shear Punch Test Using Finite Element Method and Neural Networks

    Asif Husain1, M. Guniganti2, D. K. Sehgal2, R. K. Pandey2

    CMC-Computers, Materials & Continua, Vol.8, No.3, pp. 133-150, 2008, DOI:10.3970/cmc.2008.008.133

    Abstract This paper describes an approach to identify the mechanical properties i.e. fracture and yield strength of steels. The study involves the FE simulation of shear punch test for various miniature specimens thickness ranging from 0.20mm to 0.80mm for four different steels using ABAQUS code. The experimental method of the miniature shear punch test is used to determine the material response under quasi-static loading. The load vs. displacement curves obtained from the FE simulation miniature disk specimens are compared with the experimental data obtained and found in good agreement. The resulting data from the load vs. displacement diagrams of different steels… More >

  • Open Access

    ARTICLE

    A simple and accurate four-node quadrilateral element using stabilized nodal integration for laminated plates

    H. Nguyen-Van1, N. Mai Duy2, T. Tran-Cong 3

    CMC-Computers, Materials & Continua, Vol.6, No.3, pp. 159-176, 2007, DOI:10.3970/cmc.2007.006.159

    Abstract This paper reports the development of a simple but efficient and accurate four-node quadrilateral element for models of laminated, anisotropic plate behaviour within the framework of the first-order shear deformation theory. The approach incorporates the strain smoothing method for mesh-free conforming nodal integration into the conventional finite element techniques. The membrane-bending part of the element stiffness matrix is calculated by the line integral on the boundaries of the smoothing elements while the shear part is performed using an independent interpolation field in the natural co-ordinate system. Numerical results show that the element offered here is locking-free for extremely thin laminates,… More >

  • Open Access

    ARTICLE

    A Numerical Study of Strain Localization in Elasto-Thermo-Viscoplastic Materials using Radial Basis Function Networks

    P. Le1, N. Mai-Duy1, T. Tran-Cong1, G. Baker2

    CMC-Computers, Materials & Continua, Vol.5, No.2, pp. 129-150, 2007, DOI:10.3970/cmc.2007.005.129

    Abstract This paper presents a numerical simulation of the formation and evolution of strain localization in elasto-thermo-viscoplastic materials (adiabatic shear band) by the indirect/integral radial basis function network (IRBFN) method. The effects of strain and strain rate hardening, plastic heating, and thermal softening are considered. The IRBFN method is enhanced by a new coordinate mapping which helps capture the stiff spatial structure of the resultant band. The discrete IRBFN system is integrated in time by the implicit fifth-order Runge-Kutta method. The obtained results are compared with those of the Modified Smooth Particle Hydrodynamics (MSPH) method and Chebychev Pseudo-spectral (CPS) method. More >

  • Open Access

    ARTICLE

    A New Locking Free Higher Order Finite Element Formulation for Composite Beams.

    M.V.V.S. Murthy1, S. Gopalakrishnan2,3, P.S. Nair4

    CMC-Computers, Materials & Continua, Vol.5, No.1, pp. 43-62, 2007, DOI:10.3970/cmc.2007.005.043

    Abstract A refined 2-node, 7 DOF/node beam element formulation is presented in this paper. This formulation is based on higher order shear deformation theory with lateral contraction for axial-flexural-shear coupled deformation in asymmetrically stacked laminated composite beams. In addition to axial, transverse and rotational degrees of freedom, the formulation also incorporates the lateral contraction and its higher order counterparts as degrees of freedom. The element shape functions are derived by solving the static part of the governing equations. The element considers general ply stacking and the numerical results shows that the element exhibits super convergent property. The efficiency of the element… More >

Displaying 171-180 on page 18 of 194. Per Page