Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (129)
  • Open Access

    ARTICLE

    A Hybrid Framework Combining Rule-Based and Deep Learning Approaches for Data-Driven Verdict Recommendations

    Muhammad Hameed Siddiqi1,*, Menwa Alshammeri1, Jawad Khan2,*, Muhammad Faheem Khan3, Asfandyar Khan4, Madallah Alruwaili1, Yousef Alhwaiti1, Saad Alanazi1, Irshad Ahmad5

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 5345-5371, 2025, DOI:10.32604/cmc.2025.062340 - 19 May 2025

    Abstract As legal cases grow in complexity and volume worldwide, integrating machine learning and artificial intelligence into judicial systems has become a pivotal research focus. This study introduces a comprehensive framework for verdict recommendation that synergizes rule-based methods with deep learning techniques specifically tailored to the legal domain. The proposed framework comprises three core modules: legal feature extraction, semantic similarity assessment, and verdict recommendation. For legal feature extraction, a rule-based approach leverages Black’s Law Dictionary and WordNet Synsets to construct feature vectors from judicial texts. Semantic similarity between cases is evaluated using a hybrid method that… More >

  • Open Access

    ARTICLE

    A Method for Fast Feature Selection Utilizing Cross-Similarity within the Context of Fuzzy Relations

    Wenchang Yu1, Xiaoqin Ma1,2, Zheqing Zhang1, Qinli Zhang1,2,*

    CMC-Computers, Materials & Continua, Vol.83, No.1, pp. 1195-1218, 2025, DOI:10.32604/cmc.2025.060833 - 26 March 2025

    Abstract Feature selection methods rooted in rough sets confront two notable limitations: their high computational complexity and sensitivity to noise, rendering them impractical for managing large-scale and noisy datasets. The primary issue stems from these methods’ undue reliance on all samples. To overcome these challenges, we introduce the concept of cross-similarity grounded in a robust fuzzy relation and design a rapid and robust feature selection algorithm. Firstly, we construct a robust fuzzy relation by introducing a truncation parameter. Then, based on this fuzzy relation, we propose the concept of cross-similarity, which emphasizes the sample-to-sample similarity relations… More >

  • Open Access

    ARTICLE

    Graph Similarity Learning Based on Learnable Augmentation and Multi-Level Contrastive Learning

    Jian Feng*, Yifan Guo, Cailing Du

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 5135-5151, 2025, DOI:10.32604/cmc.2025.059610 - 06 March 2025

    Abstract Graph similarity learning aims to calculate the similarity between pairs of graphs. Existing unsupervised graph similarity learning methods based on contrastive learning encounter challenges related to random graph augmentation strategies, which can harm the semantic and structural information of graphs and overlook the rich structural information present in subgraphs. To address these issues, we propose a graph similarity learning model based on learnable augmentation and multi-level contrastive learning. First, to tackle the problem of random augmentation disrupting the semantics and structure of the graph, we design a learnable augmentation method to selectively choose nodes and… More >

  • Open Access

    ARTICLE

    Semi-Supervised Medical Image Classification Based on Sample Intrinsic Similarity Using Canonical Correlation Analysis

    Kun Liu1, Chen Bao1,*, Sidong Liu2

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4451-4468, 2025, DOI:10.32604/cmc.2024.059053 - 06 March 2025

    Abstract Large amounts of labeled data are usually needed for training deep neural networks in medical image studies, particularly in medical image classification. However, in the field of semi-supervised medical image analysis, labeled data is very scarce due to patient privacy concerns. For researchers, obtaining high-quality labeled images is exceedingly challenging because it involves manual annotation and clinical understanding. In addition, skin datasets are highly suitable for medical image classification studies due to the inter-class relationships and the inter-class similarities of skin lesions. In this paper, we propose a model called Coalition Sample Relation Consistency (CSRC),… More >

  • Open Access

    ARTICLE

    Fine Tuned Hybrid Deep Learning Model for Effective Judgment Prediction

    G. Sukanya, J. Priyadarshini*

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.3, pp. 2925-2958, 2025, DOI:10.32604/cmes.2025.060030 - 03 March 2025

    Abstract Advancements in Natural Language Processing and Deep Learning techniques have significantly propelled the automation of Legal Judgment Prediction, achieving remarkable progress in legal research. Most of the existing research works on Legal Judgment Prediction (LJP) use traditional optimization algorithms in deep learning techniques falling into local optimization. This research article focuses on using the modified Pelican Optimization method which mimics the collective behavior of Pelicans in the exploration and exploitation phase during cooperative food searching. Typically, the selection of search agents within a boundary is done randomly, which increases the time required to achieve global… More >

  • Open Access

    ARTICLE

    Multi-Stage-Based Siamese Neural Network for Seal Image Recognition

    Jianfeng Lu1,2, Xiangye Huang1, Caijin Li1, Renlin Xin1, Shanqing Zhang1,2, Mahmoud Emam1,2,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.1, pp. 405-423, 2025, DOI:10.32604/cmes.2024.058121 - 17 December 2024

    Abstract Seal authentication is an important task for verifying the authenticity of stamped seals used in various domains to protect legal documents from tampering and counterfeiting. Stamped seal inspection is commonly audited manually to ensure document authenticity. However, manual assessment of seal images is tedious and labor-intensive due to human errors, inconsistent placement, and completeness of the seal. Traditional image recognition systems are inadequate enough to identify seal types accurately, necessitating a neural network-based method for seal image recognition. However, neural network-based classification algorithms, such as Residual Networks (ResNet) and Visual Geometry Group with 16 layers… More >

  • Open Access

    ARTICLE

    Medical Diagnosis Based on Multi-Attribute Group Decision-Making Using Extension Fuzzy Sets, Aggregation Operators and Basic Uncertainty Information Granule

    Anastasios Dounis*, Ioannis Palaiothodoros, Anna Panagiotou

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.1, pp. 759-811, 2025, DOI:10.32604/cmes.2024.057888 - 17 December 2024

    Abstract Accurate medical diagnosis, which involves identifying diseases based on patient symptoms, is often hindered by uncertainties in data interpretation and retrieval. Advanced fuzzy set theories have emerged as effective tools to address these challenges. In this paper, new mathematical approaches for handling uncertainty in medical diagnosis are introduced using q-rung orthopair fuzzy sets (q-ROFS) and interval-valued q-rung orthopair fuzzy sets (IVq-ROFS). Three aggregation operators are proposed in our methodologies: the q-ROF weighted averaging (q-ROFWA), the q-ROF weighted geometric (q-ROFWG), and the q-ROF weighted neutrality averaging (q-ROFWNA), which enhance decision-making under uncertainty. These operators are paired More > Graphic Abstract

    Medical Diagnosis Based on Multi-Attribute Group Decision-Making Using Extension Fuzzy Sets, Aggregation Operators and Basic Uncertainty Information Granule

  • Open Access

    ARTICLE

    A Synergistic Multi-Attribute Decision-Making Method for Educational Institutions Evaluation Using Similarity Measures of Possibility Pythagorean Fuzzy Hypersoft Sets

    Khuram Ali Khan1, Saba Mubeen Ishfaq1, Atiqe Ur Rahman2, Salwa El-Morsy3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.1, pp. 501-530, 2025, DOI:10.32604/cmes.2024.057865 - 17 December 2024

    Abstract Due to the numerous variables to take into account as well as the inherent ambiguity and uncertainty, evaluating educational institutions can be difficult. The concept of a possibility Pythagorean fuzzy hypersoft set (pPyFHSS) is more flexible in this regard than other theoretical fuzzy set-like models, even though some attempts have been made in the literature to address such uncertainties. This study investigates the elementary notions of pPyFHSS including its set-theoretic operations union, intersection, complement, OR- and AND-operations. Some results related to these operations are also modified for pPyFHSS. Additionally, the similarity measures between pPyFHSSs are More >

  • Open Access

    ARTICLE

    Fusion of Type-2 Neutrosophic Similarity Measure in Signatures Verification Systems: A New Forensic Document Analysis Paradigm

    Shahlaa Mashhadani1,*, Wisal Hashim Abdulsalam1, Oday Ali Hassen2, Saad M. Darwish3

    Intelligent Automation & Soft Computing, Vol.39, No.5, pp. 805-828, 2024, DOI:10.32604/iasc.2024.054611 - 31 October 2024

    Abstract Signature verification involves vague situations in which a signature could resemble many reference samples or might differ because of handwriting variances. By presenting the features and similarity score of signatures from the matching algorithm as fuzzy sets and capturing the degrees of membership, non-membership, and indeterminacy, a neutrosophic engine can significantly contribute to signature verification by addressing the inherent uncertainties and ambiguities present in signatures. But type-1 neutrosophic logic gives these membership functions fixed values, which could not adequately capture the various degrees of uncertainty in the characteristics of signatures. Type-1 neutrosophic representation is also… More >

  • Open Access

    ARTICLE

    An Intrusion Detection Method Based on a Universal Gravitation Clustering Algorithm

    Jian Yu1,2,*, Gaofeng Yu3, Xiangmei Xiao1,2, Zhixing Lin1,2

    Journal of Cyber Security, Vol.6, pp. 41-68, 2024, DOI:10.32604/jcs.2024.049658 - 04 June 2024

    Abstract With the rapid advancement of the Internet, network attack methods are constantly evolving and adapting. To better identify the network attack behavior, a universal gravitation clustering algorithm was proposed by analyzing the dissimilarities and similarities of the clustering algorithms. First, the algorithm designated the cluster set as vacant, with the introduction of a new object. Subsequently, a new cluster based on the given object was constructed. The dissimilarities between it and each existing cluster were calculated using a defined difference measure. The minimum dissimilarity was selected. Through comparing the proposed algorithm with the traditional Back More >

Displaying 11-20 on page 2 of 129. Per Page