Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    Titin (Visco-) Elasticity in Skeletal Muscle Myofibrils

    JA. Herzog, TR. Leonard, A. Jinha, W. Herzog†,‡

    Molecular & Cellular Biomechanics, Vol.11, No.1, pp. 1-17, 2014, DOI:10.3970/mcb.2014.011.001

    Abstract Titin is the third most abundant protein in sarcomeres and fulfills a number of mechanical and signaling functions. Specifically, titin is responsible for most of the passive forces in sarcomeres and the passive visco-elastic behaviour of myofibrils and muscles. It has been suggested, based on mechanical testing of isolated titin molecules, that titin is an essentially elastic spring if Ig domain un/refolding is prevented either by working at short titin lengths, prior to any unfolding of Ig domains, or at long sarcomere (and titin) lengths when Ig domain un/refolding is effectively prevented. However, these properties of titin, and by extension… More >

Displaying 1-10 on page 1 of 1. Per Page