Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    A Stacked BWO-NIGP Framework for Robust and Accurate SOH Estimation of Lithium-Ion Batteries under Noisy and Small-Sample Scenarios

    Pu Yang1,*, Wanning Yan1, Rong Li1, Lei Chen2, Lijie Guo2

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 699-725, 2025, DOI:10.32604/cmc.2025.064947 - 09 June 2025

    Abstract Lithium-ion batteries (LIBs) have been widely used in mobile energy storage systems because of their high energy density, long life, and strong environmental adaptability. Accurately estimating the state of health (SOH) for LIBs is promising and has been extensively studied for many years. However, the current prediction methods are susceptible to noise interference, and the estimation accuracy has room for improvement. Motivated by this, this paper proposes a novel battery SOH estimation method, the Beluga Whale Optimization (BWO) and Noise-Input Gaussian Process (NIGP) Stacked Model (BGNSM). This method integrates the BWO-optimized Gaussian Process Regression (GPR)… More >

  • Open Access

    ARTICLE

    Gyroscope Dynamic Balance Counterweight Prediction Based on Multi-Head ResGAT Networks

    Wuyang Fan, Shisheng Zhong*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 2525-2555, 2024, DOI:10.32604/cmes.2023.046951 - 11 March 2024

    Abstract The dynamic balance assessment during the assembly of the coordinator gyroscope significantly impacts the guidance accuracy of precision-guided equipment. In dynamic balance debugging, reliance on rudimentary counterweight empirical formulas persists, resulting in suboptimal debugging accuracy and an increased repetition rate. To mitigate this challenge, we present a multi-head residual graph attention network (ResGAT) model, designed to predict dynamic balance counterweights with high precision. In this research, we employ graph neural networks for interaction feature extraction from assembly graph data. An SDAE-GPC model is designed for the assembly condition classification to derive graph data inputs for More >

  • Open Access

    ARTICLE

    A Fast Small-Sample Modeling Method for Precision Inertial Systems Fault Prediction and Quantitative Anomaly Measurement

    Hongqiao Wang1,*, Yanning Cai2

    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.1, pp. 187-203, 2022, DOI:10.32604/cmes.2022.018000 - 29 November 2021

    Abstract Inertial system platforms are a kind of important precision devices, which have the characteristics of difficult acquisition for state data and small sample scale. Focusing on the model optimization for data-driven fault state prediction and quantitative degree measurement, a fast small-sample supersphere one-class SVM modeling method using support vectors pre-selection is systematically studied in this paper. By theorem-proving the irrelevance between the model's learning result and the non-support vectors (NSVs), the distribution characters of the support vectors are analyzed. On this basis, a modeling method with selected samples having specific geometry character from the training More >

Displaying 1-10 on page 1 of 3. Per Page