Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (70)
  • Open Access

    ARTICLE

    Secured-FL: Blockchain-Based Defense against Adversarial Attacks on Federated Learning Models

    Bello Musa Yakubu1,*, Nor Shahida Mohd Jamail 2, Rabia Latif 2, Seemab Latif 3

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072426 - 12 January 2026

    Abstract Federated Learning (FL) enables joint training over distributed devices without data exchange but is highly vulnerable to attacks by adversaries in the form of model poisoning and malicious update injection. This work proposes Secured-FL, a blockchain-based defensive framework that combines smart contract–based authentication, clustering-driven outlier elimination, and dynamic threshold adjustment to defend against adversarial attacks. The framework was implemented on a private Ethereum network with a Proof-of-Authority consensus algorithm to ensure tamper-resistant and auditable model updates. Large-scale simulation on the Cyber Data dataset, under up to 50% malicious client settings, demonstrates Secured-FL achieves 6%–12% higher accuracy, More >

  • Open Access

    ARTICLE

    A Novel Signature-Based Secure Intrusion Detection for Smart Transportation Systems

    Hanaa Nafea1, Awais Qasim2, Sana Abdul Sattar2, Adeel Munawar3, Muhammad Nadeem Ali4, Byung-Seo Kim4,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072281 - 12 January 2026

    Abstract The increased connectivity and reliance on digital technologies have exposed smart transportation systems to various cyber threats, making intrusion detection a critical aspect of ensuring their secure operation. Traditional intrusion detection systems have limitations in terms of centralized architecture, lack of transparency, and vulnerability to single points of failure. This is where the integration of blockchain technology with signature-based intrusion detection can provide a robust and decentralized solution for securing smart transportation systems. This study tackles the issue of database manipulation attacks in smart transportation networks by proposing a signature-based intrusion detection system. The introduced More >

  • Open Access

    ARTICLE

    Blockchain and Smart Contracts with Barzilai-Borwein Intelligence for Industrial Cyber-Physical System

    Gowrishankar Jayaraman1, Ashok Kumar Munnangi2, Ramesh Sekaran3, Arunkumar Gopu3, Manikandan Ramachandran4,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.071124 - 12 January 2026

    Abstract Industrial Cyber-Physical Systems (ICPSs) play a vital role in modern industries by providing an intellectual foundation for automated operations. With the increasing integration of information-driven processes, ensuring the security of Industrial Control Production Systems (ICPSs) has become a critical challenge. These systems are highly vulnerable to attacks such as denial-of-service (DoS), eclipse, and Sybil attacks, which can significantly disrupt industrial operations. This work proposes an effective protection strategy using an Artificial Intelligence (AI)-enabled Smart Contract (SC) framework combined with the Heterogeneous Barzilai–Borwein Support Vector (HBBSV) method for industrial-based CPS environments. The approach reduces run time… More >

  • Open Access

    ARTICLE

    Smart Contract Vulnerability Detection Based on Symbolic Execution and Graph Neural Networks

    Haoxin Sun1, Xiao Yu1,*, Jiale Li1, Yitong Xu1, Jie Yu1, Huanhuan Li1, Yuanzhang Li2, Yu-An Tan2

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-15, 2026, DOI:10.32604/cmc.2025.070930 - 09 December 2025

    Abstract Since the advent of smart contracts, security vulnerabilities have remained a persistent challenge, compromsing both the reliability of contract execution and the overall stability of the virtual currency market. Consequently, the academic community has devoted increasing attention to these security risks. However, conventional approaches to vulnerability detection frequently exhibit limited accuracy. To address this limitation, the present study introduces a novel vulnerability detection framework called GNNSE that integrates symbolic execution with graph neural networks (GNNs). The proposed method first constructs semantic graphs to comprehensively capture the control flow and data flow dependencies within smart contracts. More >

  • Open Access

    ARTICLE

    Ponzi Scheme Detection for Smart Contracts Based on Oversampling

    Yafei Liu1,2, Yuling Chen1,2,*, Xuewei Wang3, Yuxiang Yang2, Chaoyue Tan2

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-21, 2026, DOI:10.32604/cmc.2025.069152 - 10 November 2025

    Abstract As blockchain technology rapidly evolves, smart contracts have seen widespread adoption in financial transactions and beyond. However, the growing prevalence of malicious Ponzi scheme contracts presents serious security threats to blockchain ecosystems. Although numerous detection techniques have been proposed, existing methods suffer from significant limitations, such as class imbalance and insufficient modeling of transaction-related semantic features. To address these challenges, this paper proposes an oversampling-based detection framework for Ponzi smart contracts. We enhance the Adaptive Synthetic Sampling (ADASYN) algorithm by incorporating sample proximity to decision boundaries and ensuring realistic sample distributions. This enhancement facilitates the… More >

  • Open Access

    REVIEW

    Computer Modeling Approaches for Blockchain-Driven Supply Chain Intelligence: A Review on Enhancing Transparency, Security, and Efficiency

    Puranam Revanth Kumar1, Gouse Baig Mohammad2, Pallati Narsimhulu3, Dharnisha Narasappa4, Lakshmana Phaneendra Maguluri5, Subhav Singh6,7,8, Shitharth Selvarajan9,10,11,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 2779-2818, 2025, DOI:10.32604/cmes.2025.066365 - 30 September 2025

    Abstract Blockchain Technology (BT) has emerged as a transformative solution for improving the efficacy, security, and transparency of supply chain intelligence. Traditional Supply Chain Management (SCM) systems frequently have problems such as data silos, a lack of visibility in real time, fraudulent activities, and inefficiencies in tracking and traceability. Blockchain’s decentralized and irreversible ledger offers a solid foundation for dealing with these issues; it facilitates trust, security, and the sharing of data in real-time among all parties involved. Through an examination of critical technologies, methodology, and applications, this paper delves deeply into computer modeling based-blockchain framework… More >

  • Open Access

    ARTICLE

    Blockchain and Smart Contracts: An Effective Approach for the Transaction Security & Privacy in Electronic Medical Records

    Amal Al-Rasheed1, Hashim Ali2,*, Rahim Khan2,*, Aamir Saeed3

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 3419-3436, 2025, DOI:10.32604/cmc.2025.065156 - 23 September 2025

    Abstract In the domain of Electronic Medical Records (EMRs), emerging technologies are crucial to addressing longstanding concerns surrounding transaction security and patient privacy. This paper explores the integration of smart contracts and blockchain technology as a robust framework for securing sensitive healthcare data. By leveraging the decentralized and immutable nature of blockchain, the proposed approach ensures transparency, integrity, and traceability of EMR transactions, effectively mitigating risks of unauthorized access and data tampering. Smart contracts further enhance this framework by enabling the automation and enforcement of secure transactions, eliminating reliance on intermediaries and reducing the potential for… More >

  • Open Access

    ARTICLE

    A Hybrid Machine Learning and Blockchain Framework for IoT DDoS Mitigation

    Singamaneni Krishnapriya1,2,*, Sukhvinder Singh1

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.2, pp. 1849-1881, 2025, DOI:10.32604/cmes.2025.068326 - 31 August 2025

    Abstract The explosive expansion of the Internet of Things (IoT) systems has increased the imperative to have strong and robust solutions to cyber Security, especially to curtail Distributed Denial of Service (DDoS) attacks, which can cripple critical infrastructure. The proposed framework presented in the current paper is a new hybrid scheme that induces deep learning-based traffic classification and blockchain-enabled mitigation to make intelligent, decentralized, and real-time DDoS countermeasures in an IoT network. The proposed model fuses the extracted deep features with statistical features and trains them by using traditional machine-learning algorithms, which makes them more accurate… More > Graphic Abstract

    A Hybrid Machine Learning and Blockchain Framework for IoT DDoS Mitigation

  • Open Access

    ARTICLE

    Smart Contract-Aided Attribute-Based Signature Algorithm with Non-Monotonic Access Structures

    Xin Xu1,*, Zhen Yang2, Yongfeng Huang1

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 5019-5035, 2025, DOI:10.32604/cmc.2025.061046 - 19 May 2025

    Abstract Attribute-Based Signature (ABS) is a powerful cryptographic primitive that enables fine-grained access control in distributed systems. However, its high computational cost makes it unsuitable for resource-constrained environments, and traditional monotonic access structures are inadequate for handling increasingly complex access policies. In this paper, we propose a novel smart contract-assisted ABS (SC-ABS) algorithm that supports non-monotonic access structures, aiming to reduce client computing overhead while providing more expressive and flexible access control. The SC-ABS scheme extends the monotonic access structure by introducing the concept of negative attributes, allowing for more complex and dynamic access policies. By… More >

  • Open Access

    ARTICLE

    GMS: A Novel Method for Detecting Reentrancy Vulnerabilities in Smart Contracts

    Dawei Xu1,2, Fan Huang1, Jiaxin Zhang1, Yunfang Liang1, Baokun Zheng3,*, Jian Zhao1

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 2207-2220, 2025, DOI:10.32604/cmc.2025.061455 - 16 April 2025

    Abstract With the rapid proliferation of Internet of Things (IoT) devices, ensuring their communication security has become increasingly important. Blockchain and smart contract technologies, with their decentralized nature, provide strong security guarantees for IoT. However, at the same time, smart contracts themselves face numerous security challenges, among which reentrancy vulnerabilities are particularly prominent. Existing detection tools for reentrancy vulnerabilities often suffer from high false positive and false negative rates due to their reliance on identifying patterns related to specific transfer functions. To address these limitations, this paper proposes a novel detection method that combines pattern matching… More >

Displaying 1-10 on page 1 of 70. Per Page