Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (71)
  • Open Access


    Anomaly Detection in Social Media Texts Using Optimal Convolutional Neural Network

    Swarna Sudha Muppudathi1, Valarmathi Krishnasamy2,*

    Intelligent Automation & Soft Computing, Vol.36, No.1, pp. 1027-1042, 2023, DOI:10.32604/iasc.2023.031165

    Abstract Social Networking Sites (SNSs) are nowadays utilized by the whole world to share ideas, images, and valuable contents by means of a post to reach a group of users. The use of SNS often inflicts the physical and the mental health of the people. Nowadays, researchers often focus on identifying the illegal behaviors in the SNS to reduce its negative influence. The state-of-art Natural Language processing techniques for anomaly detection have utilized a wide annotated corpus to identify the anomalies and they are often time-consuming as well as certainly do not guarantee maximum accuracy. To overcome these issues, the proposed… More >

  • Open Access


    Malicious Activities Prediction Over Online Social Networking Using Ensemble Model

    S. Sadhasivam1, P. Valarmathie2, K. Dinakaran3,*

    Intelligent Automation & Soft Computing, Vol.36, No.1, pp. 461-479, 2023, DOI:10.32604/iasc.2023.028650

    Abstract With the vast advancements in Information Technology, the emergence of Online Social Networking (OSN) has also hit its peak and captured the attention of the young generation people. The clone intends to replicate the users and inject massive malicious activities that pose a crucial security threat to the original user. However, the attackers also target this height of OSN utilization, explicitly creating the clones of the user’s account. Various clone detection mechanisms are designed based on social-network activities. For instance, monitoring the occurrence of clone edges is done to restrict the generation of clone activities. However, this assumption is unsuitable… More >

  • Open Access


    Big Data Analytics Using Graph Signal Processing

    Farhan Amin1, Omar M. Barukab2, Gyu Sang Choi1,*

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 489-502, 2023, DOI:10.32604/cmc.2023.030615

    Abstract The networks are fundamental to our modern world and they appear throughout science and society. Access to a massive amount of data presents a unique opportunity to the researcher’s community. As networks grow in size the complexity increases and our ability to analyze them using the current state of the art is at severe risk of failing to keep pace. Therefore, this paper initiates a discussion on graph signal processing for large-scale data analysis. We first provide a comprehensive overview of core ideas in Graph signal processing (GSP) and their connection to conventional digital signal processing (DSP). We then summarize… More >

  • Open Access


    Improved Key Node Recognition Method of Social Network Based on PageRank Algorithm

    Lei Hong1, Yiji Qian1,*, Chaofan Gong2, Yurui Zhang1, Xin Zhou3

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 1887-1903, 2023, DOI:10.32604/cmc.2023.029180

    Abstract The types and functions of social networking sites are becoming more abundant with the prevalence of self-media culture, and the number of daily active users of social networking sites represented by Weibo and Zhihu continues to expand. There are key node users in social networks. Compared with ordinary users, their influence is greater, their radiation range is wider, and their information transmission capabilities are better. The key node users playimportant roles in public opinion monitoring and hot event prediction when evaluating the criticality of nodes in social networking sites. In order to solve the problems of incomplete evaluation factors, poor… More >

  • Open Access


    Multi-attribute Group Decision-making Based on Hesitant Bipolar-valued Fuzzy Information and Social Network

    Dhanalakshmi R1, Sovan Samanta2, Arun Kumar Sivaraman3, Jeong Gon Lee4,*, Balasundaram A5, Sanamdikar Sanjay Tanaji6, Priya Ravindran7

    Computer Systems Science and Engineering, Vol.44, No.3, pp. 1939-1950, 2023, DOI:10.32604/csse.2023.026254

    Abstract Fuzzy sets have undergone several expansions and generalisations in the literature, including Atanasov’s intuitionistic fuzzy sets, type 2 fuzzy sets, and fuzzy multisets, to name a few. They can be regarded as fuzzy multisets from a formal standpoint; nevertheless, their interpretation differs from the two other approaches to fuzzy multisets that are currently available. Hesitating fuzzy sets (HFS) are very useful if consultants have hesitation in dealing with group decision-making problems between several possible memberships. However, these possible memberships can be not only crisp values in [0,1], but also interval values during a practical evaluation process. Hesitant bipolar valued fuzzy… More >

  • Open Access


    Model for Generating Scale-Free Artificial Social Networks Using Small-World Networks

    Farhan Amin, Gyu Sang Choi*

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 6367-6391, 2022, DOI:10.32604/cmc.2022.029927

    Abstract The Internet of Things (IoT) has the potential to be applied to social networks due to innovative characteristics and sophisticated solutions that challenge traditional uses. Social network analysis (SNA) is a good example that has recently gained a lot of scientific attention. It has its roots in social and economic research, as well as the evaluation of network science, such as graph theory. Scientists in this area have subverted predefined theories, offering revolutionary ones regarding interconnected networks, and they have highlighted the mystery of six degrees of separation with confirmation of the small-world phenomenon. The motivation of this study is… More >

  • Open Access


    A Parallel Approach for Sentiment Analysis on Social Networks Using Spark

    M. Mohamed Iqbal1,*, K. Latha2

    Intelligent Automation & Soft Computing, Vol.35, No.2, pp. 1831-1842, 2023, DOI:10.32604/iasc.2023.029036

    Abstract The public is increasingly using social media platforms such as Twitter and Facebook to express their views on a variety of topics. As a result, social media has emerged as the most effective and largest open source for obtaining public opinion. Single node computational methods are inefficient for sentiment analysis on such large datasets. Supercomputers or parallel or distributed processing are two options for dealing with such large amounts of data. Most parallel programming frameworks, such as MPI (Message Processing Interface), are difficult to use and scale in environments where supercomputers are expensive. Using the Apache Spark Parallel Model, this… More >

  • Open Access


    SPN-Based Performance Analysis of Multiple Users’ Behaviors for SNS

    Zhiguo Hong1,*, Yongbin Wang2,3, Minyong Shi4

    Journal of Information Hiding and Privacy Protection, Vol.4, No.1, pp. 1-13, 2022, DOI:10.32604/jihpp.2022.026440

    Abstract With the rapid development of various applications of Information Technology, big data are increasingly generated by social network services (SNS) nowadays. The designers and providers of SNS distribute different client applications for PC, Mobile phone, IPTV etc., so that users can obtain related service via mobile or traditional Internet. Good scalability and considerably short time delay are important indices for evaluating social network systems. As a result, investigating and mining the principle of users’ behaviors is an important issue which can guide service providers to establish optimal systems with SNS. On the basis of analyzing the characteristics of social network… More >

  • Open Access


    SAFT-VNDN: A Socially-Aware Forwarding Technique in Vehicular Named Data Networking

    Amel Boudelaa1, Zohra Abdelhafidi1, Nasreddine Lagraa1, Chaker Abdelaziz Kerrache1, Muhammad Bilal2, Daehan Kwak3,*, Mohamed Bachir Yagoubi1

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 2495-2512, 2022, DOI:10.32604/cmc.2022.028619

    Abstract Vehicular Social Networks (VSNs) is the bridge of social networks and Vehicular Ad-Hoc Networks (VANETs). VSNs are promising as they allow the exchange of various types of contents in large-scale through Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) communication protocols. Vehicular Named Data Networking (VNDN) is an auspicious communication paradigm for the challenging VSN environment since it can optimize content dissemination by decoupling contents from their physical locations. However, content dissemination and caching represent crucial challenges in VSNs due to short link lifetime and intermittent connectivity caused by vehicles’ high mobility. Our aim with this paper is to improve content delivery and… More >

  • Open Access


    Detection of Toxic Content on Social Networking Platforms Using Fine Tuned ULMFiT Model

    Hafsa Naveed1, Abid Sohail2, Jasni Mohamad Zain3,*, Noman Saleem4, Rao Faizan Ali5, Shahid Anwar6

    Intelligent Automation & Soft Computing, Vol.35, No.1, pp. 15-30, 2023, DOI:10.32604/iasc.2023.023277

    Abstract Question and answer websites such as Quora, Stack Overflow, Yahoo Answers and Answer Bag are used by professionals. Multiple users post questions on these websites to get the answers from domain specific professionals. These websites are multilingual meaning they are available in many different languages. Current problem for these types of websites is to handle meaningless and irrelevant content. In this paper we have worked on the Quora insincere questions (questions which are based on false assumptions or questions which are trying to make a statement rather than seeking for helpful answers) dataset in order to identify user insincere questions,… More >

Displaying 21-30 on page 3 of 71. Per Page