Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (23)
  • Open Access

    ARTICLE

    Software Defect Prediction Based on Semantic Views of Metrics: Clustering Analysis and Model Performance Analysis

    Baishun Zhou1,2, Haijiao Zhao3, Yuxin Wen2, Gangyi Ding1, Ying Xing3,*, Xinyang Lin4, Lei Xiao5

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 5201-5221, 2025, DOI:10.32604/cmc.2025.065726 - 30 July 2025

    Abstract In recent years, with the rapid development of software systems, the continuous expansion of software scale and the increasing complexity of systems have led to the emergence of a growing number of software metrics. Defect prediction methods based on software metric elements highly rely on software metric data. However, redundant software metric data is not conducive to efficient defect prediction, posing severe challenges to current software defect prediction tasks. To address these issues, this paper focuses on the rational clustering of software metric data. Firstly, multiple software projects are evaluated to determine the preset number… More >

  • Open Access

    ARTICLE

    A Feature Selection Method for Software Defect Prediction Based on Improved Beluga Whale Optimization Algorithm

    Shaoming Qiu, Jingjie He, Yan Wang*, Bicong E

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 4879-4898, 2025, DOI:10.32604/cmc.2025.061532 - 19 May 2025

    Abstract Software defect prediction (SDP) aims to find a reliable method to predict defects in specific software projects and help software engineers allocate limited resources to release high-quality software products. Software defect prediction can be effectively performed using traditional features, but there are some redundant or irrelevant features in them (the presence or absence of this feature has little effect on the prediction results). These problems can be solved using feature selection. However, existing feature selection methods have shortcomings such as insignificant dimensionality reduction effect and low classification accuracy of the selected optimal feature subset. In… More >

  • Open Access

    ARTICLE

    SESDP: A Sentiment Analysis-Driven Approach for Enhancing Software Product Security by Identifying Defects through Social Media Reviews

    Farah Mohammad1,2,*, Saad Al-Ahmadi3, Jalal Al-Muhtadi1,3

    CMC-Computers, Materials & Continua, Vol.83, No.1, pp. 1327-1345, 2025, DOI:10.32604/cmc.2025.060228 - 26 March 2025

    Abstract Software defect prediction is a critical component in maintaining software quality, enabling early identification and resolution of issues that could lead to system failures and significant financial losses. With the increasing reliance on user-generated content, social media reviews have emerged as a valuable source of real-time feedback, offering insights into potential software defects that traditional testing methods may overlook. However, existing models face challenges like handling imbalanced data, high computational complexity, and insufficient integration of contextual information from these reviews. To overcome these limitations, this paper introduces the SESDP (Sentiment Analysis-Based Early Software Defect Prediction)… More >

  • Open Access

    ARTICLE

    A Software Defect Prediction Method Using a Multivariate Heterogeneous Hybrid Deep Learning Algorithm

    Qi Fei1,2,*, Haojun Hu3, Guisheng Yin1, Zhian Sun2

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 3251-3279, 2025, DOI:10.32604/cmc.2024.058931 - 17 February 2025

    Abstract Software defect prediction plays a critical role in software development and quality assurance processes. Effective defect prediction enables testers to accurately prioritize testing efforts and enhance defect detection efficiency. Additionally, this technology provides developers with a means to quickly identify errors, thereby improving software robustness and overall quality. However, current research in software defect prediction often faces challenges, such as relying on a single data source or failing to adequately account for the characteristics of multiple coexisting data sources. This approach may overlook the differences and potential value of various data sources, affecting the accuracy… More >

  • Open Access

    ARTICLE

    A Fine-Grained Defect Prediction Method Based on Drift-Immune Graph Neural Networks

    Fengyu Yang1,2,*, Fa Zhong2, Xiaohui Wei1, Guangdong Zeng2

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 3563-3590, 2025, DOI:10.32604/cmc.2024.057697 - 17 February 2025

    Abstract The primary goal of software defect prediction (SDP) is to pinpoint code modules that are likely to contain defects, thereby enabling software quality assurance teams to strategically allocate their resources and manpower. Within-project defect prediction (WPDP) is a widely used method in SDP. Despite various improvements, current methods still face challenges such as coarse-grained prediction and ineffective handling of data drift due to differences in project distribution. To address these issues, we propose a fine-grained SDP method called DIDP (drift-immune defect prediction), based on drift-immune graph neural networks (DI-GNN). DIDP converts source code into graph… More >

  • Open Access

    ARTICLE

    Static Analysis Techniques for Fixing Software Defects in MPI-Based Parallel Programs

    Norah Abdullah Al-Johany1,*, Sanaa Abdullah Sharaf1,2, Fathy Elbouraey Eassa1,2, Reem Abdulaziz Alnanih1,2,*

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 3139-3173, 2024, DOI:10.32604/cmc.2024.047392 - 15 May 2024

    Abstract The Message Passing Interface (MPI) is a widely accepted standard for parallel computing on distributed memory systems. However, MPI implementations can contain defects that impact the reliability and performance of parallel applications. Detecting and correcting these defects is crucial, yet there is a lack of published models specifically designed for correcting MPI defects. To address this, we propose a model for detecting and correcting MPI defects (DC_MPI), which aims to detect and correct defects in various types of MPI communication, including blocking point-to-point (BPTP), nonblocking point-to-point (NBPTP), and collective communication (CC). The defects addressed by… More >

  • Open Access

    ARTICLE

    Nonparametric Statistical Feature Scaling Based Quadratic Regressive Convolution Deep Neural Network for Software Fault Prediction

    Sureka Sivavelu, Venkatesh Palanisamy*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3469-3487, 2024, DOI:10.32604/cmc.2024.047407 - 26 March 2024

    Abstract The development of defect prediction plays a significant role in improving software quality. Such predictions are used to identify defective modules before the testing and to minimize the time and cost. The software with defects negatively impacts operational costs and finally affects customer satisfaction. Numerous approaches exist to predict software defects. However, the timely and accurate software bugs are the major challenging issues. To improve the timely and accurate software defect prediction, a novel technique called Nonparametric Statistical feature scaled QuAdratic regressive convolution Deep nEural Network (SQADEN) is introduced. The proposed SQADEN technique mainly includes… More >

  • Open Access

    ARTICLE

    Cross-Project Software Defect Prediction Based on SMOTE and Deep Canonical Correlation Analysis

    Xin Fan1,2, Shuqing Zhang1,2,*, Kaisheng Wu1,2, Wei Zheng1,2, Yu Ge1,2

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 1687-1711, 2024, DOI:10.32604/cmc.2023.046187 - 27 February 2024

    Abstract Cross-Project Defect Prediction (CPDP) is a method that utilizes historical data from other source projects to train predictive models for defect prediction in the target project. However, existing CPDP methods only consider linear correlations between features (indicators) of the source and target projects. These models are not capable of evaluating non-linear correlations between features when they exist, for example, when there are differences in data distributions between the source and target projects. As a result, the performance of such CPDP models is compromised. In this paper, this paper proposes a novel CPDP method based on… More >

  • Open Access

    ARTICLE

    Software Defect Prediction Method Based on Stable Learning

    Xin Fan1,2,3, Jingen Mao2,3,*, Liangjue Lian2,3, Li Yu1, Wei Zheng2,3, Yun Ge2,3

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 65-84, 2024, DOI:10.32604/cmc.2023.045522 - 30 January 2024

    Abstract The purpose of software defect prediction is to identify defect-prone code modules to assist software quality assurance teams with the appropriate allocation of resources and labor. In previous software defect prediction studies, transfer learning was effective in solving the problem of inconsistent project data distribution. However, target projects often lack sufficient data, which affects the performance of the transfer learning model. In addition, the presence of uncorrelated features between projects can decrease the prediction accuracy of the transfer learning model. To address these problems, this article propose a software defect prediction method based on stable… More >

  • Open Access

    ARTICLE

    Graph-Based Feature Learning for Cross-Project Software Defect Prediction

    Ahmed Abdu1, Zhengjun Zhai1,2, Hakim A. Abdo3, Redhwan Algabri4,*, Sungon Lee5,*

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 161-180, 2023, DOI:10.32604/cmc.2023.043680 - 31 October 2023

    Abstract Cross-project software defect prediction (CPDP) aims to enhance defect prediction in target projects with limited or no historical data by leveraging information from related source projects. The existing CPDP approaches rely on static metrics or dynamic syntactic features, which have shown limited effectiveness in CPDP due to their inability to capture higher-level system properties, such as complex design patterns, relationships between multiple functions, and dependencies in different software projects, that are important for CPDP. This paper introduces a novel approach, a graph-based feature learning model for CPDP (GB-CPDP), that utilizes NetworkX to extract features and… More >

Displaying 1-10 on page 1 of 23. Per Page