Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (294)
  • Open Access

    ARTICLE

    Advanced Meta-Heuristic Optimization for Accurate Photovoltaic Model Parameterization: A High-Accuracy Estimation Using Spider Wasp Optimization

    Sarah M. Alhammad1, Diaa Salama AbdElminaam2,3,*, Asmaa Rizk Ibrahim4, Ahmed Taha2

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.069263 - 12 January 2026

    Abstract Accurate parameter extraction of photovoltaic (PV) models plays a critical role in enabling precise performance prediction, optimal system sizing, and effective operational control under diverse environmental conditions. While a wide range of metaheuristic optimisation techniques have been applied to this problem, many existing methods are hindered by slow convergence rates, susceptibility to premature stagnation, and reduced accuracy when applied to complex multi-diode PV configurations. These limitations can lead to suboptimal modelling, reducing the efficiency of PV system design and operation. In this work, we propose an enhanced hybrid optimisation approach, the modified Spider Wasp Optimization… More >

  • Open Access

    ARTICLE

    Thin-Layer Convective Solar Drying and Mathematical Modelling of the Drying Kinetics of Marrubium vulgare Leaves

    Mohammed Benamara1,2, Boumediene Touati3, Said Bennaceur4, Bendjillali Ridha Ilyas5,*

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.072641 - 27 December 2025

    Abstract This study explores the thin-layer convective solar drying of Marrubium vulgare L. leaves under conditions typical of sun-rich semi-arid climates. Drying experiments were conducted at three inlet-air temperatures (40°C, 50°C, 60°C) and two air velocities (1.5 and 2.5 m·s−1) using an indirect solar dryer with auxiliary temperature control. Moisture-ratio data were fitted with eight widely used thin-layer models and evaluated using correlation coefficient (r), root-mean-square error (RMSE), and Akaike information criterion (AIC). A complementary heat-transfer analysis based on Reynolds and Prandtl numbers with appropriate Nusselt correlations was used to relate flow regime to drying performance, and an… More > Graphic Abstract

    Thin-Layer Convective Solar Drying and Mathematical Modelling of the Drying Kinetics of <i>Marrubium vulgare</i> Leaves

  • Open Access

    ARTICLE

    Scalable and Passive Concentrator Photovoltaics Using a Multi-Focal Pyramidal Array: A Multi-Physics Modeling Approach

    Mussad Mohammed Al-Zahrani*, Taher Maatallah

    Frontiers in Heat and Mass Transfer, Vol.23, No.6, pp. 1883-1905, 2025, DOI:10.32604/fhmt.2025.074656 - 31 December 2025

    Abstract Conventional concentrator photovoltaics (CPV) face a persistent trade-off between high efficiency and high cost, driven by expensive multi-junction solar cells and complex active cooling systems. This study presents a computational investigation of a novel Multi-Focal Pyramidal Array (MFPA)-based CPV system designed to overcome this limitation. The MFPA architecture employs a geometrically optimized pyramidal concentrator to distribute concentrated sunlight onto strategically placed, low-cost monocrystalline silicon cells, enabling high efficiency energy capture while passively managing thermal loads. Coupled optical thermal electrical simulations in COMSOL Multiphysics demonstrate a geometric concentration ratio of 120×, with system temperatures maintained below More >

  • Open Access

    ARTICLE

    Simulation and Performance Analysis of a Photovoltaic-Thermal Heat Pump System

    Jinyou Qiu1,2, Jiale Liu1,2, Yubing Li1,2,*, Shaogeng Zhong3, Guilong Dai1,2, Wenhua Liu4

    Frontiers in Heat and Mass Transfer, Vol.23, No.6, pp. 2025-2049, 2025, DOI:10.32604/fhmt.2025.072260 - 31 December 2025

    Abstract The growing demand for energy-saving and renewable heating solutions has made photovoltaic/thermal (PV/T) heat pump systems a promising technology. However, their thermal and electrical performance, as well as the overall utilization of solar energy, strongly depend on capacity configuration and operating parameters. To address this issue, this study proposes a PV/T heat pump system featuring a novel rhombic flow channel structure that functions as the collector-evaporator. An experimental test bench was established to evaluate system performance, and a one-dimensional numerical model was developed to investigate the effects of environmental and operating parameters. The simulation results… More > Graphic Abstract

    Simulation and Performance Analysis of a Photovoltaic-Thermal Heat Pump System

  • Open Access

    ARTICLE

    Life Cycle Assessment of Solar-Assisted Post-Combustion CO2 Capture Using Hollow Fiber Membrane Contactors

    Lei Wang1, Hongyang Zhou2, Xiaofan Liu3, Junkun Mu2, Jinpeng Bi2, Youkang Jin2, Juan Ge2, Yuexia Lv2,4,*

    Frontiers in Heat and Mass Transfer, Vol.23, No.6, pp. 1811-1832, 2025, DOI:10.32604/fhmt.2025.071222 - 31 December 2025

    Abstract Membrane gas absorption and solar-assisted absorbent regeneration offer a sustainable approach to reduce the energy penalty of post-combustion CO2 capture. This study introduces a novel system integrating solar thermal energy with membrane gas absorption to capture CO2 from a 580 MWe pulverized coal power plant. The environmental impacts across six scenarios at varying solar fractions are evaluated via life cycle assessment. Results show a 7.61%–13.04% reduction in global warming potential compared to a steam-driven CO2 capture system. Electricity and steam consumption dominate the operational phase, contributing 15%–64% and 18%–61% to environmental impacts in non-TES scenarios, respectively. While More >

  • Open Access

    ARTICLE

    A Numerical Study of the Double Diffusivity with Convective and Radiative Turbulent Flow in a Greenhouse with Humidity Sources

    J. Serrano-Arellano1, M.I. Hernández-López1, J. L. Chávez-Servín2, E. V. Macias-Melo3, K. M. Aguilar-Castro3,*

    Frontiers in Heat and Mass Transfer, Vol.23, No.6, pp. 1741-1765, 2025, DOI:10.32604/fhmt.2025.069560 - 31 December 2025

    Abstract A numerical study analyzed double diffusion caused by convective and radiative heat transfer in a greenhouse with and without internal humidity sources. Two cases were examined: one considering temperature and mass concentration gradients on vertical walls and another incorporating internal humidity sources, enhancing convective and diffusive flows. Four configurations were analyzed by varying the length of the greenhouse, and the Rayleigh number was calculated over a range from 2.29 × 1010 to 6.07 × 1012. Simulations modeled the greenhouse interior six times a day (8:00 a.m. to 7:00 p.m.), accounting for external temperature, humidity, and solar More > Graphic Abstract

    A Numerical Study of the Double Diffusivity with Convective and Radiative Turbulent Flow in a Greenhouse with Humidity Sources

  • Open Access

    ARTICLE

    A Generative Sky Image-Based Two-Stage Framework for Probabilistic Photovoltaic Power Forecasting

    Chen Pan, ChangGyoon Lim*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 3747-3781, 2025, DOI:10.32604/cmes.2025.073389 - 23 December 2025

    Abstract Solar forecasting using ground-based sky image offers a promising approach to reduce uncertainty in photovoltaic (PV) power generation. However, existing methods often rely on deterministic predictions that lack diversity, making it difficult to capture the inherently stochastic nature of cloud movement. To address this limitation, we propose a new two-stage probabilistic forecasting framework. In the first stage, we introduce I-GPT, a multiscale physics-constrained generative model for stochastic sky image prediction. Given a sequence of past sky images, I-GPT uses a Transformer-based VQ-VAE. It also incorporates multi-scale physics-informed recurrent units (Multi-scale PhyCell) and dynamically weighted fuses… More >

  • Open Access

    ARTICLE

    Forecasting Performance Indicators of a Single-Channel Solar Chimney Using Artificial Neural Networks

    Carlos Torres-Aguilar1,*, Pedro Moreno2,*, Diego Rossit3, Sergio Nesmachnow4, Karla M. Aguilar-Castro1, Edgar V. Macias-Melo1, Luis Hernández-Callejo5

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 3859-3881, 2025, DOI:10.32604/cmes.2025.069996 - 23 December 2025

    Abstract Solar chimneys are renewable energy systems designed to enhance natural ventilation, improving thermal comfort in buildings. As passive systems, solar chimneys contribute to energy efficiency in a sustainable and environmentally friendly way. The effectiveness of a solar chimney depends on its design and orientation relative to the cardinal directions, both of which are critical for optimal performance. This article presents a supervised learning approach using artificial neural networks to forecast the performance indicators of solar chimneys. The dataset includes information from 2784 solar chimney configurations, which encompasses various factors such as chimney height, channel thickness, More > Graphic Abstract

    Forecasting Performance Indicators of a Single-Channel Solar Chimney Using Artificial Neural Networks

  • Open Access

    ARTICLE

    Theoretical studies of the physical properties of solar material CuAlS2

    G. Yana, S. R. Zhanga,*, H. J. Houb, Z. F. Yinb, H. L. Guoc

    Chalcogenide Letters, Vol.22, No.1, pp. 33-42, 2025, DOI:10.15251/CL.2025.221.33

    Abstract The theoretical approach was employed to comprehensively investigate the structural, dynamical, band structure, optical characteristics, and elastic anisotropy of CuAlS2. The determined lattice parameters (a and c), elastic properties exhibit with the available data. The band structure and density of state indicates that CuAlS2 exhibits semiconductor properties, characterized by a direct band gap measuring approximately 1.791 eV. The mechanical stability and optical properties of CuAlS2 was calculated and analyzed. More >

  • Open Access

    ARTICLE

    Enhanced performance of tin sulfide thin-film solar cells via silicon substrate integration: a combined experimental and simulation study

    O. Mekhbia, K. Kamlib,*, Z. Hadefb, O. Kamlic, M. Bouatrousd, N. Houaidjie, L. Zighedh

    Chalcogenide Letters, Vol.22, No.4, pp. 331-339, 2025, DOI:10.15251/CL.2025.224.331

    Abstract This work presents a hybrid study that employs Ultrasonic Spray method for the deposition of SnS absorber films and SCAPS-1D simulation method for the analysis of various solar cell topologies. Different deposition times have been employed to optimize structural, optics, and electrical properties. To evaluate their potential as absorber layers for solar cells, the films were analyzed by using X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and tested for electrical performance. Complementary numerical simulations were carried out with SCAPS-1D in modeling ZnO:Al/i-ZnO/SnS2/SnS solar cell structures. Results showed that optimized SnS thickness of 2.5 µm and high carrier More >

Displaying 1-10 on page 1 of 294. Per Page