Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Direct Production of Sorbitol-Plasticized Bioplastic Film from Gracilaria sp.

    Ahmad Faldo1, Labanta Marbun1, Hezekiah Lemuel Putra Zebua1, Fateha Fateha2, Rossy Choerun Nissa2, Yurin Karunia Apsha Albaina Iasya3, Riri Uswatun Annifah3, Amrul Amrul1, Yeyen Nurhamiyah2,*

    Journal of Polymer Materials, Vol.42, No.3, pp. 743-755, 2025, DOI:10.32604/jpm.2025.069981 - 30 September 2025

    Abstract Conventional bioplastic production from seaweed often relies on extraction processes that are costly, time-consuming, and yield limited product. This study presents a direct fabrication method using Gracilaria sp., a red seaweed rich in polysaccharides, to produce bioplastic films without the need for extraction. Sorbitol was incorporated as a plasticizer at concentrations of 0%–10% (w/w) to modify film characteristics. Thermal analysis revealed improved stability at moderate sorbitol levels (5%–7%), while excessive plasticizer slightly reduced thermal resistance. Mechanical testing showed that sorbitol increased film flexibility and elongation at break, though tensile strength and stiffness declined. Tear strength followed More >

  • Open Access

    ARTICLE

    Role of Calcination Temperature on Isosorbide Production from Sorbitol Dehydration over the Catalyst Derived from Ce(IV) Sulfate

    Medta Boupan1,2, Kanyapak Prompang1, Achiraya Chompunuch1, Piwat Boonma1, Arthit Neramittagapong1,2,3,4, Somnuk Theerakulpisut5, Sutasinee Neramittagapong1,2,3,*

    Journal of Renewable Materials, Vol.11, No.7, pp. 2985-3000, 2023, DOI:10.32604/jrm.2023.026397 - 05 June 2023

    Abstract Isosorbide is a multi-purpose chemical that can be produced from renewable resources. Specifically, it has been investigated as a replacement for toxic bisphenol A (BPA) in the production of polycarbonate (PC). In this study, the synthesis of isosorbide by sorbitol dehydration using a cerium-based catalyst derived from calcined cerium (IV) sulfate (300°C, 400°C, 450°C, 500°C, and 650°C) was investigated. The reaction occurred in a high-pressure reactor containing nitrogen gas. Advanced instrumental techniques were applied to analyze the characteristics of the calcined catalyst. The results showed that the calcined catalysts demonstrated different crystalline structures and sulfate More > Graphic Abstract

    Role of Calcination Temperature on Isosorbide Production from Sorbitol Dehydration over the Catalyst Derived from Ce(IV) Sulfate

Displaying 1-10 on page 1 of 2. Per Page