Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Blade Cutting Influence on Centrifugal Pump Noise Reduction

    Tianpeng Li1,*, Yujun Duan2, Qianghu Ji3

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.3, pp. 623-644, 2025, DOI:10.32604/fdmp.2024.053862 - 01 April 2025

    Abstract A centrifugal pump with a specific speed ns = 67 is considered in this study to investigate the impact of blade cutting (at the outlet edge) on the fluid-induced noise, while keeping all the other geometric parameters unchanged. The required unsteady numerical calculations are conducted by applying the RNG k-ε turbulence model with the volute dipole being used as the sound source. The results indicate that the internal pressure energy of the centrifugal pump essentially depends on the blade passing frequency and its low-frequency harmonic frequency. Moreover, the pressure pulsation distribution directly affects the noise caused More >

  • Open Access

    ARTICLE

    Numerical Study of the Effect of Splitter Blades on the Flow-Induced Noise of Hydraulic Turbine

    Fengxia Shi1,2, Guangbiao Zhao1,*, Yucai Tang1, Haonan Zhan1, Pengcheng Wang1

    Sound & Vibration, Vol.58, pp. 101-117, 2024, DOI:10.32604/sv.2024.047082 - 11 March 2024

    Abstract In order to study the effect of splitter blades on the internal and external sound field of the hydraulic turbine, the paper chose a centrifugal pump with a specific speed ns = 33 reversed as a hydraulic turbine as the research object, and added the short blades on the original impeller to form a new splitter impeller. Based on the Re-Normalization Group (RNG) k-ε turbulence model to conduct numerical simulation for the hydraulic turbine, this thesis calculated the internal and external acoustic field by means of the acoustic boundary element (BEM) and finite element (FEM) and… More >

Displaying 1-10 on page 1 of 2. Per Page