Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (56)
  • Open Access

    ARTICLE

    Development of AHP-Based Divergence Distance Measure between –Spherical Fuzzy Sets with Applications in Multi-Criteria Decision Making

    Shah Zeb Khan1, Muhammad Rahim2, Adel M. Widyan3,*, A. Almutairi3, Njood Shaher Ethaar Almutire3, Hamiden Abd El-Wahed Khalifa3

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.2, pp. 2185-2211, 2025, DOI:10.32604/cmes.2025.063929 - 30 May 2025

    Abstract This study introduces a novel distance measure (DM) for spherical fuzzy sets (SFSs) to improve decision-making in complex and uncertain environments. Many existing distance measures either fail to satisfy essential axiomatic properties or produce unintuitive outcomes. To address these limitations, we propose a new three-dimensional divergence-based DM that ensures mathematical consistency, enhances the discrimination of information, and adheres to the axiomatic framework of distance theory. Building on this foundation, we construct a multi-criteria decision-making (MCDM) model that utilizes the proposed DM to evaluate and rank alternatives effectively. The applicability and robustness of the model are More >

  • Open Access

    ARTICLE

    A Numerical Study of the Caputo Fractional Nonlinear Rössler Attractor Model via Ultraspherical Wavelets Approach

    Ashish Rayal1, Priya Dogra1, Sabri T. M. Thabet2,3,4,*, Imed Kedim5, Miguel Vivas-Cortez6,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.2, pp. 1895-1925, 2025, DOI:10.32604/cmes.2025.060989 - 30 May 2025

    Abstract The Rössler attractor model is an important model that provides valuable insights into the behavior of chaotic systems in real life and is applicable in understanding weather patterns, biological systems, and secure communications. So, this work aims to present the numerical performances of the nonlinear fractional Rössler attractor system under Caputo derivatives by designing the numerical framework based on Ultraspherical wavelets. The Caputo fractional Rössler attractor model is simulated into two categories, (i) Asymmetric and (ii) Symmetric. The Ultraspherical wavelets basis with suitable collocation grids is implemented for comprehensive error analysis in the solutions of More >

  • Open Access

    ARTICLE

    Hole Cleaning and Critical Transport Rate in Ultra-Deep, Oversized Wellbores

    Yuyao Li1, Mingmin He1, Mingjie Cai1, Shiqian Xu2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.4, pp. 799-817, 2025, DOI:10.32604/fdmp.2025.062862 - 06 May 2025

    Abstract In ultra-deep and large well sections, high collapse stresses and diminished annular return velocity present significant challenges to wellbore cleaning. With increasing depth, rising temperature and pressure constrain the regulation of displacement and drilling fluid rheology, impairing the fluid’s capacity to transport cuttings effectively. A precise understanding of cuttings settlement behavior and terminal velocity is therefore essential for optimizing their removal. This study accounts for variations in wellbore temperature and pressure, incorporates non-spherical cuttings and wellbore diameter parameters, and develops accordingly a simplified model to predict terminal settlement velocity. The cuttings carrying ratio is introduced… More > Graphic Abstract

    Hole Cleaning and Critical Transport Rate in Ultra-Deep, Oversized Wellbores

  • Open Access

    ARTICLE

    Integrating Image Processing Technology and Deep Learning to Identify Crops in UAV Orthoimages

    Ching-Lung Fan1,*, Yu-Jen Chung2

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 1925-1945, 2025, DOI:10.32604/cmc.2025.059245 - 17 February 2025

    Abstract This study aims to enhance automated crop detection using high-resolution Unmanned Aerial Vehicle (UAV) imagery by integrating the Visible Atmospherically Resistant Index (VARI) with deep learning models. The primary challenge addressed is the detection of bananas interplanted with betel nuts, a scenario where traditional image processing techniques struggle due to color similarities and canopy overlap. The research explores the effectiveness of three deep learning models—Single Shot MultiBox Detector (SSD), You Only Look Once version 3 (YOLOv3), and Faster Region-Based Convolutional Neural Network (Faster RCNN)—using Red, Green, Blue (RGB) and VARI images for banana detection. Results More >

  • Open Access

    ARTICLE

    Study of the Transport Behavior of Multispherical Proppant in Intersecting Fracture Based on Discrete Element Method

    Chengyong Peng1, Jianshu Wu1, Mao Jiang1, Biao Yin2,3,*, Yishan Lou2,3

    Energy Engineering, Vol.122, No.1, pp. 185-201, 2025, DOI:10.32604/ee.2024.056062 - 27 December 2024

    Abstract To analyze the differences in the transport and distribution of different types of proppants and to address issues such as the short effective support of proppant and poor placement in hydraulically intersecting fractures, this study considered the combined impact of geological-engineering factors on conductivity. Using reservoir production parameters and the discrete element method, multispherical proppants were constructed. Additionally, a 3D fracture model, based on the specified conditions of the L block, employed coupled (Computational Fluid Dynamics) CFD-DEM (Discrete Element Method) for joint simulations to quantitatively analyze the transport and placement patterns of multispherical proppants in… More > Graphic Abstract

    Study of the Transport Behavior of Multispherical Proppant in Intersecting Fracture Based on Discrete Element Method

  • Open Access

    ARTICLE

    Fully Completed Spherical Fuzzy Approach-Based Z Numbers (PHI Model) for Enhanced Group Expert Consensus

    Phi-Hung Nguyen*

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 1655-1675, 2024, DOI:10.32604/cmc.2024.050713 - 18 July 2024

    Abstract This study aims to establish an expert consensus and enhance the efficacy of decision-making processes by integrating Spherical Fuzzy Sets (SFSs) and Z-Numbers (SFZs). A novel group expert consensus technique, the PHI model, is developed to address the inherent limitations of both SFSs and the traditional Delphi technique, particularly in uncertain, complex scenarios. In such contexts, the accuracy of expert knowledge and the confidence in their judgments are pivotal considerations. This study provides the fundamental operational principles and aggregation operators associated with SFSs and Z-numbers, encompassing weighted geometric and arithmetic operators alongside fully developed operators… More >

  • Open Access

    ARTICLE

    Oscillatory Dynamics of a Spherical Solid in a Liquid in an Axisymmetric Variable Cross Section Channel

    Ivan Karpunin*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.6, pp. 1219-1232, 2024, DOI:10.32604/fdmp.2024.051062 - 27 June 2024

    Abstract The dynamics of a solid spherical body in an oscillating liquid flow in a vertical axisymmetric channel of variable cross section is experimentally studied. It is shown that the oscillating liquid leads to the generation of intense averaged flows in each of the channel segments. The intensity and direction of these flows depend on the dimensionless oscillating frequency. In the region of studied frequencies, the dynamics of the considered body is examined when the primary vortices emerging in the flow occupy the whole region in each segment. For a fixed frequency, an increase in the… More >

  • Open Access

    ARTICLE

    A Study on the Performances of Solar Air Collectors Having a Hemispherical Dimple on the Absorber Plate

    Shuilian Li1, Fan Zeng1, Xinli Wei2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.5, pp. 939-955, 2024, DOI:10.32604/fdmp.2023.043614 - 07 June 2024

    Abstract In order to increase the efficiency of solar air collectors, a new variant with a protrusion is proposed in this study, and its performances are analyzed from two points of view, namely, in terms of optics and thermodynamics aspects. By comparing and analyzing the light paths of the protrusion and the dimple, it can be concluded that when sunlight shines on the dimple, it is reflected and absorbed multiple times, whereas for the sunlight shining on the protrusion, there is no secondary reflection or absorption of light. When the lighting area and the properties of… More >

  • Open Access

    ARTICLE

    The Spherical q-Linear Diophantine Fuzzy Multiple-Criteria Group Decision-Making Based on Differential Measure

    Huzaira Razzaque1, Shahzaib Ashraf1,*, Muhammad Naeem2, Yu-Ming Chu3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.2, pp. 1925-1950, 2024, DOI:10.32604/cmes.2023.030030 - 17 November 2023

    Abstract Spherical q-linear Diophantine fuzzy sets (Sq-LDFSs) proved more effective for handling uncertainty and vagueness in multi-criteria decision-making (MADM). It does not only cover the data in two variable parameters but is also beneficial for three parametric data. By Pythagorean fuzzy sets, the difference is calculated only between two parameters (membership and non-membership). According to human thoughts, fuzzy data can be found in three parameters (membership uncertainty, and non-membership). So, to make a compromise decision, comparing Sq-LDFSs is essential. Existing measures of different fuzzy sets do, however, can have several flaws that can lead to counterintuitive… More >

  • Open Access

    PROCEEDINGS

    Particle Dynamics in a Low-Reynolds-Number Fluid Under Spherical Confinement

    Gaofeng Chen1,2, Xikai Jiang1,2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.09877

    Abstract Dynamics of a single particle suspended in a low-Reynolds-number fluid under spherical confinement was studied numerically. We calculated hydrodynamic mobilities of a sphere, a prolate spheroid, and an oblate spheroid parallel and transverse to particle-cavity line of centres. The mobilities show maximum in the cavity centre and decay as the particle moves towards the no-slip wall. For prolate and oblate spheroids, their mobilities are also affected by the angle between particle's axis of revolution and the particle-cavity line of centres due to particle anisotropy. It was observed that the effect of particle anisotropy becomes stronger… More >

Displaying 1-10 on page 1 of 56. Per Page