Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (59)
  • Open Access

    ARTICLE

    Energy Transfer during Strong Oscillations of a Spherical Bubble with Non-Ideal Gas Equations of State

    Minki Kim1, Jenny Jyoung Lee2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 345-366, 2025, DOI:10.32604/cmes.2025.070524 - 30 October 2025

    Abstract Spherical bubble oscillations are widely used to model cavitation phenomena in biomedical and naval hydrodynamic systems. During collapse, a sudden increase in surrounding pressure initiates the collapse of a cavitation bubble, followed by a rebound driven by the high internal gas pressure. While the ideal gas equation of state (EOS) is commonly used to describe the internal pressure and temperature of the bubble, it is limited in its capacity to capture molecular-level effects under highly compressed conditions. In the present study, we employ non-ideal EOS for the gas (the van der Waals EOS and its… More >

  • Open Access

    PROCEEDINGS

    Dynamic Response of Fractional-Order Thermal-Magnetic-Elastic Coupled Solids with Spherical Holes Based on Moore-Gibson-Thompson Theory

    Lixu Chen, Yongbin Ma*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.1, pp. 1-1, 2025, DOI:10.32604/icces.2025.012272

    Abstract This study establishes an innovative theoretical framework for thermo-magneto-elastic coupling, based on the generalized thermoelastic theory of Moore-Gibson-Thompson (MGT), and significantly extends the constitutive equation by introducing spatio-temporal nonlocal parameters to more accurately describe the thermodynamic behavior of materials under extreme conditions, such as ultrafast laser heating and micro-nano scale environments. This paper innovatively adopts tempered Caputo fractional derivatives to describe the memory effect of the system, which can more accurately describe complex thermodynamic processes and significantly enhance the physical authenticity of the model. The dynamic response of magneto-thermo-elasticity of spherical cavity structures under time-varying… More >

  • Open Access

    ARTICLE

    Quantum-Driven Spherical Fuzzy Model for Best Gate Security Systems

    Muhammad Amad Sarwar1,*, Yuezheng Gong1, Sarah A. Alzakari2, Amel Ali Alhussan2

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.3, pp. 3523-3555, 2025, DOI:10.32604/cmes.2025.066356 - 30 June 2025

    Abstract Global security threats have motivated organizations to adopt robust and reliable security systems to ensure the safety of individuals and assets. Biometric authentication systems offer a strong solution. However, choosing the best security system requires a structured decision-making framework, especially in complex scenarios involving multiple criteria. To address this problem, we develop a novel quantum spherical fuzzy technique for order preference by similarity to ideal solution (QSF-TOPSIS) methodology, integrating quantum mechanics principles and fuzzy theory. The proposed approach enhances decision-making accuracy, handles uncertainty, and incorporates criteria relationships. Criteria weights are determined using spherical fuzzy sets,… More >

  • Open Access

    ARTICLE

    Development of AHP-Based Divergence Distance Measure between –Spherical Fuzzy Sets with Applications in Multi-Criteria Decision Making

    Shah Zeb Khan1, Muhammad Rahim2, Adel M. Widyan3,*, A. Almutairi3, Njood Shaher Ethaar Almutire3, Hamiden Abd El-Wahed Khalifa3

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.2, pp. 2185-2211, 2025, DOI:10.32604/cmes.2025.063929 - 30 May 2025

    Abstract This study introduces a novel distance measure (DM) for spherical fuzzy sets (SFSs) to improve decision-making in complex and uncertain environments. Many existing distance measures either fail to satisfy essential axiomatic properties or produce unintuitive outcomes. To address these limitations, we propose a new three-dimensional divergence-based DM that ensures mathematical consistency, enhances the discrimination of information, and adheres to the axiomatic framework of distance theory. Building on this foundation, we construct a multi-criteria decision-making (MCDM) model that utilizes the proposed DM to evaluate and rank alternatives effectively. The applicability and robustness of the model are More >

  • Open Access

    ARTICLE

    A Numerical Study of the Caputo Fractional Nonlinear Rössler Attractor Model via Ultraspherical Wavelets Approach

    Ashish Rayal1, Priya Dogra1, Sabri T. M. Thabet2,3,4,*, Imed Kedim5, Miguel Vivas-Cortez6,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.2, pp. 1895-1925, 2025, DOI:10.32604/cmes.2025.060989 - 30 May 2025

    Abstract The Rössler attractor model is an important model that provides valuable insights into the behavior of chaotic systems in real life and is applicable in understanding weather patterns, biological systems, and secure communications. So, this work aims to present the numerical performances of the nonlinear fractional Rössler attractor system under Caputo derivatives by designing the numerical framework based on Ultraspherical wavelets. The Caputo fractional Rössler attractor model is simulated into two categories, (i) Asymmetric and (ii) Symmetric. The Ultraspherical wavelets basis with suitable collocation grids is implemented for comprehensive error analysis in the solutions of More >

  • Open Access

    ARTICLE

    Hole Cleaning and Critical Transport Rate in Ultra-Deep, Oversized Wellbores

    Yuyao Li1, Mingmin He1, Mingjie Cai1, Shiqian Xu2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.4, pp. 799-817, 2025, DOI:10.32604/fdmp.2025.062862 - 06 May 2025

    Abstract In ultra-deep and large well sections, high collapse stresses and diminished annular return velocity present significant challenges to wellbore cleaning. With increasing depth, rising temperature and pressure constrain the regulation of displacement and drilling fluid rheology, impairing the fluid’s capacity to transport cuttings effectively. A precise understanding of cuttings settlement behavior and terminal velocity is therefore essential for optimizing their removal. This study accounts for variations in wellbore temperature and pressure, incorporates non-spherical cuttings and wellbore diameter parameters, and develops accordingly a simplified model to predict terminal settlement velocity. The cuttings carrying ratio is introduced… More > Graphic Abstract

    Hole Cleaning and Critical Transport Rate in Ultra-Deep, Oversized Wellbores

  • Open Access

    ARTICLE

    Integrating Image Processing Technology and Deep Learning to Identify Crops in UAV Orthoimages

    Ching-Lung Fan1,*, Yu-Jen Chung2

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 1925-1945, 2025, DOI:10.32604/cmc.2025.059245 - 17 February 2025

    Abstract This study aims to enhance automated crop detection using high-resolution Unmanned Aerial Vehicle (UAV) imagery by integrating the Visible Atmospherically Resistant Index (VARI) with deep learning models. The primary challenge addressed is the detection of bananas interplanted with betel nuts, a scenario where traditional image processing techniques struggle due to color similarities and canopy overlap. The research explores the effectiveness of three deep learning models—Single Shot MultiBox Detector (SSD), You Only Look Once version 3 (YOLOv3), and Faster Region-Based Convolutional Neural Network (Faster RCNN)—using Red, Green, Blue (RGB) and VARI images for banana detection. Results More >

  • Open Access

    ARTICLE

    Study of the Transport Behavior of Multispherical Proppant in Intersecting Fracture Based on Discrete Element Method

    Chengyong Peng1, Jianshu Wu1, Mao Jiang1, Biao Yin2,3,*, Yishan Lou2,3

    Energy Engineering, Vol.122, No.1, pp. 185-201, 2025, DOI:10.32604/ee.2024.056062 - 27 December 2024

    Abstract To analyze the differences in the transport and distribution of different types of proppants and to address issues such as the short effective support of proppant and poor placement in hydraulically intersecting fractures, this study considered the combined impact of geological-engineering factors on conductivity. Using reservoir production parameters and the discrete element method, multispherical proppants were constructed. Additionally, a 3D fracture model, based on the specified conditions of the L block, employed coupled (Computational Fluid Dynamics) CFD-DEM (Discrete Element Method) for joint simulations to quantitatively analyze the transport and placement patterns of multispherical proppants in… More > Graphic Abstract

    Study of the Transport Behavior of Multispherical Proppant in Intersecting Fracture Based on Discrete Element Method

  • Open Access

    ARTICLE

    Fully Completed Spherical Fuzzy Approach-Based Z Numbers (PHI Model) for Enhanced Group Expert Consensus

    Phi-Hung Nguyen*

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 1655-1675, 2024, DOI:10.32604/cmc.2024.050713 - 18 July 2024

    Abstract This study aims to establish an expert consensus and enhance the efficacy of decision-making processes by integrating Spherical Fuzzy Sets (SFSs) and Z-Numbers (SFZs). A novel group expert consensus technique, the PHI model, is developed to address the inherent limitations of both SFSs and the traditional Delphi technique, particularly in uncertain, complex scenarios. In such contexts, the accuracy of expert knowledge and the confidence in their judgments are pivotal considerations. This study provides the fundamental operational principles and aggregation operators associated with SFSs and Z-numbers, encompassing weighted geometric and arithmetic operators alongside fully developed operators… More >

  • Open Access

    ARTICLE

    Oscillatory Dynamics of a Spherical Solid in a Liquid in an Axisymmetric Variable Cross Section Channel

    Ivan Karpunin*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.6, pp. 1219-1232, 2024, DOI:10.32604/fdmp.2024.051062 - 27 June 2024

    Abstract The dynamics of a solid spherical body in an oscillating liquid flow in a vertical axisymmetric channel of variable cross section is experimentally studied. It is shown that the oscillating liquid leads to the generation of intense averaged flows in each of the channel segments. The intensity and direction of these flows depend on the dimensionless oscillating frequency. In the region of studied frequencies, the dynamics of the considered body is examined when the primary vortices emerging in the flow occupy the whole region in each segment. For a fixed frequency, an increase in the… More >

Displaying 1-10 on page 1 of 59. Per Page