Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (22)
  • Open Access


    An Advanced Stochastic Numerical Approach for Host-Vector-Predator Nonlinear Model

    Prem Junswang1, Zulqurnain Sabir2, Muhammad Asif Zahoor Raja3, Soheil Salahshour4, Thongchai Botmart5,*, Wajaree Weera5

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 5823-5843, 2022, DOI:10.32604/cmc.2022.027629

    Abstract A novel design of the computational intelligent framework is presented to solve a class of host-vector-predator nonlinear model governed with set of ordinary differential equations. The host-vector-predator nonlinear model depends upon five groups or classes, host plant susceptible and infected populations, vectors population of susceptible and infected individuals and the predator population. An unsupervised artificial neural network is designed using the computational framework of local and global search competencies of interior-point algorithm and genetic algorithms. For solving the host-vector-predator nonlinear model, a merit function is constructed using the differential model and its associated boundary conditions. The optimization of this merit… More >

  • Open Access


    Spider Monkey Optimization with Statistical Analysis for Robust Rainfall Prediction

    Mahmoud Ragab1,2,3,*

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 4143-4155, 2022, DOI:10.32604/cmc.2022.027075

    Abstract Rainfall prediction becomes popular in real time environment due to the developments of recent technologies. Accurate and fast rainfall predictive models can be designed by the use of machine learning (ML), statistical models, etc. Besides, feature selection approaches can be derived for eliminating the curse of dimensionality problems. In this aspect, this paper presents a novel chaotic spider money optimization with optimal kernel ridge regression (CSMO-OKRR) model for accurate rainfall prediction. The goal of the CSMO-OKRR technique is to properly predict the rainfall using the weather data. The proposed CSMO-OKRR technique encompasses three major processes namely feature selection, prediction, and… More >

  • Open Access


    Application of Machine Learning for Tool Condition Monitoring in Turning

    A. D. Patange1,2, R. Jegadeeshwaran1,*, N. S. Bajaj2, A. N. Khairnar2, N. A. Gavade2

    Sound & Vibration, Vol.56, No.2, pp. 127-145, 2022, DOI:10.32604/sv.2022.014910


    The machining process is primarily used to remove material using cutting tools. Any variation in tool state affects the quality of a finished job and causes disturbances. So, a tool monitoring scheme (TMS) for categorization and supervision of failures has become the utmost priority. To respond, traditional TMS followed by the machine learning (ML) analysis is advocated in this paper. Classification in ML is supervised based learning method wherein the ML algorithm learn from the training data input fed to it and then employ this model to categorize the new datasets for precise prediction of a class and observation. In… More >

  • Open Access


    Covid-19’s Pandemic Relationship to Saudi Arabia’s Weather Using Statistical Analysis and GIS

    Ranya Fadlalla Elsheikh1,2,*

    Computer Systems Science and Engineering, Vol.42, No.2, pp. 813-823, 2022, DOI:10.32604/csse.2022.021645

    Abstract The eruption of the novel Covid-19 has changed the socio-economic conditions of the world. The escalating number of infections and deaths seriously threatened human health when it became a pandemic from an epidemic. It developed into an alarming situation when the World Health Organization (WHO) declared a health emergency in MARCH 2020. The geographic settings and weather conditions are systematically linked to the spread of the epidemic. The concentration of population and weather attributes remains vital to study a pandemic such as Covid-19. The current work aims to explore the relationship of the population, weather conditions (humidity and temperature) with… More >

  • Open Access


    Wavelet Decomposition Impacts on Traditional Forecasting Time Series Models

    W. A. Shaikh1,2,*, S. F. Shah2, S. M. Pandhiani3, M. A. Solangi2

    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.3, pp. 1517-1532, 2022, DOI:10.32604/cmes.2022.017822

    Abstract This investigative study is focused on the impact of wavelet on traditional forecasting time-series models, which significantly shows the usage of wavelet algorithms. Wavelet Decomposition (WD) algorithm has been combined with various traditional forecasting time-series models, such as Least Square Support Vector Machine (LSSVM), Artificial Neural Network (ANN) and Multivariate Adaptive Regression Splines (MARS) and their effects are examined in terms of the statistical estimations. The WD has been used as a mathematical application in traditional forecast modelling to collect periodically measured parameters, which has yielded tremendous constructive outcomes. Further, it is observed that the wavelet combined models are classy… More >

  • Open Access


    Color Contrast Enhancement on Pap Smear Images Using Statistical Analysis

    Nadzirah Nahrawi1, Wan Azani Mustafa2,3,*, Siti Nurul Aqmariah Mohd Kanafiah1, Mohd Yusoff Mashor1

    Intelligent Automation & Soft Computing, Vol.30, No.2, pp. 431-438, 2021, DOI:10.32604/iasc.2021.018635

    Abstract In the conventional cervix cancer diagnosis, the Pap smear sample images are taken by using a microscope,causing the cells to be hazy and afflicted by unwanted noise. The captured microscopic images of Pap smear may suffer from some defects such as blurring or low contrasts. These problems can hide and obscure the important cervical cell morphologies, leading to the risk of false diagnosis. The quality and contrast of the Pap smear images are the primary keys that could affect the diagnosis’ accuracy. The paper's main objective is to propose the best contrast enhancement to eliminate contrast problems in images and… More >

  • Open Access


    A Binomial Model Approach: Comparing the R0 Values of SARS-CoV-2 rRT-PCR Data from Laboratories across Northern Cyprus

    Nazife Sultanoglu1,2,*, Nezihal Gokbulut3, Tamer Sanlidag2, Evren Hincal2,3, Bilgen Kaymakamzade2,3, Murat Sayan2,4

    CMES-Computer Modeling in Engineering & Sciences, Vol.128, No.2, pp. 717-729, 2021, DOI:10.32604/cmes.2021.016297

    Abstract Northern Cyprus has implemented relatively strict measures in the battle against the outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The measures were introduced at the beginning of the COVID-19 pandemic, in order to prevent the spread of the disease. One of these measures was the use of two separate real-time reverse transcription polymerase chain reaction (rRT-PCR) tests for SARS-CoV-2 referred to as the double screening procedure, which was adopted following the re-opening of the sea, air and land borders for passengers after the first lockdown. The rRT-PCR double screening procedure involved reporting a negative rRT-PCR test which was… More >

  • Open Access


    Epidemiological Analysis of the Coronavirus Disease Outbreak with Random Effects

    Muhammad Farman1, Aqeel Ahmad1, Ali Akgül2,*, Muhammad Umer Saleem3, Muhammad Naeem4, Dumitru Baleanu5,6,7

    CMC-Computers, Materials & Continua, Vol.67, No.3, pp. 3215-3227, 2021, DOI:10.32604/cmc.2021.014006

    Abstract Today, coronavirus appears as a serious challenge to the whole world. Epidemiological data of coronavirus is collected through media and web sources for the purpose of analysis. New data on COVID-19 are available daily, yet information about the biological aspects of SARS-CoV-2 and epidemiological characteristics of COVID-19 remains limited, and uncertainty remains around nearly all its parameters’ values. This research provides the scientific and public health communities better resources, knowledge, and tools to improve their ability to control the infectious diseases. Using the publicly available data on the ongoing pandemic, the present study investigates the incubation period and other time… More >

  • Open Access


    Analyzing COVID-19 Impact on the Researchers Productivity through Their Perceptions

    Syeda Javeria Shoukat1, Humaira Afzal2, Muhammad Rafiq Mufti3, Muhammad Khalid Sohail4, Dost Muhammad Khan5, Nadeem Akhtar5, Shahid Hussain6,*, Mansoor Ahmed1

    CMC-Computers, Materials & Continua, Vol.67, No.2, pp. 1835-1847, 2021, DOI:10.32604/cmc.2021.014397

    Abstract Context: Since the end of 2019, the COVID-19 pandemic had a worst impact on world’s economy, healthcare, and education. There are several aspects where the impact of COVID-19 could be visualized. Among these, one aspect is the productivity of researcher, which plays a significant role in the success of an organization. Problem: There are several factors that could be aligned with the researcher’s productivity of each domain and whose analysis through researcher’s feedback could be beneficial for decision makers in terms of their decision making and implementation of mitigation plans for the success of an organization. Method: We perform an… More >

  • Open Access


    Statistical Analysis and Multimodal Classification on Noisy Eye Tracker and Application Log Data of Children with Autism and ADHD

    Mahiye Uluyagmur Ozturka, Ayse Rodopman Armanb, Gresa Carkaxhiu Bulutc, Onur Tugce Poyraz Findikb, Sultan Seval Yilmazd, Herdem Aslan Gencb, M. Yanki Yazgane,f, Umut Tekera, Zehra Cataltepea

    Intelligent Automation & Soft Computing, Vol.24, No.4, pp. 891-905, 2018, DOI:10.31209/2018.100000058

    Abstract Emotion recognition behavior and performance may vary between people with major neurodevelopmental disorders such as Autism Spectrum Disorder (ASD), Attention Deficit Hyperactivity Disorder (ADHD) and control groups. It is crucial to identify these differences for early diagnosis and individual treatment purposes. This study represents a methodology by using statistical data analysis and machine learning to provide help to psychiatrists and therapists on the diagnosis and individualized treatment of participants with ASD and ADHD. In this paper we propose an emotion recognition experiment environment and collect eye tracker fixation data together with the application log data (APL). In order to detect… More >

Displaying 11-20 on page 2 of 22. Per Page