Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (15)
  • Open Access

    ARTICLE

    Hybrid Forecasting Techniques for Renewable Energy Integration in Electricity Markets Using Fractional and Fractal Approach

    Tariq Ali1,2,*, Muhammad Ayaz1,2, Mohammad Hijji2, Imran Baig3, MI Mohamed Ershath4, Saleh Albelwi2

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 3839-3858, 2025, DOI:10.32604/cmes.2025.073169 - 23 December 2025

    Abstract The integration of renewable energy sources into electricity markets presents significant challenges due to the inherent variability and uncertainty of power generation from wind, solar, and other renewables. Accurate forecasting is crucial for ensuring grid stability, optimizing market operations, and minimizing economic risks. This paper introduces a hybrid forecasting framework incorporating fractional-order statistical models, fractal-based feature engineering, and deep learning architectures to improve renewable energy forecasting accuracy. Fractional autoregressive integrated moving average (FARIMA) and fractional exponential smoothing (FETS) models are explored for capturing long-memory dependencies in energy time-series data. Additionally, multifractal detrended fluctuation analysis (MFDFA) More >

  • Open Access

    ARTICLE

    Performance Analysis of Various Forecasting Models for Multi-Seasonal Global Horizontal Irradiance Forecasting Using the India Region Dataset

    Manoharan Madhiarasan*

    Energy Engineering, Vol.122, No.8, pp. 2993-3011, 2025, DOI:10.32604/ee.2025.068358 - 24 July 2025

    Abstract Accurate Global Horizontal Irradiance (GHI) forecasting has become vital for successfully integrating solar energy into the electrical grid because of the expanding demand for green power and the worldwide shift favouring green energy resources. Particularly considering the implications of the aggressive GHG emission targets, accurate GHI forecasting has become vital for developing, designing, and operational managing solar energy systems. This research presented the core concepts of modelling and performance analysis of the application of various forecasting models such as ARIMA (Autoregressive Integrated Moving Average), Elaman NN (Elman Neural Network), RBFN (Radial Basis Function Neural Network),… More >

  • Open Access

    ARTICLE

    The Lambert-G Family: Properties, Inference, and Applications

    Jamal N. Al Abbasi1, Ahmed Z. Afify2,*, Badr Alnssyan3,*, Mustafa S. Shama4,5

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 513-536, 2024, DOI:10.32604/cmes.2024.046533 - 16 April 2024

    Abstract This study proposes a new flexible family of distributions called the Lambert-G family. The Lambert family is very flexible and exhibits desirable properties. Its three-parameter special sub-models provide all significant monotonic and non-monotonic failure rates. A special sub-model of the Lambert family called the Lambert-Lomax (LL) distribution is investigated. General expressions for the LL statistical properties are established. Characterizations of the LL distribution are addressed mathematically based on its hazard function. The estimation of the LL parameters is discussed using six estimation methods. The performance of this estimation method is explored through simulation experiments. The More >

  • Open Access

    ARTICLE

    Women Entrepreneurship Index Prediction Model with Automated Statistical Analysis

    V. Saikumari*, V. Sunitha

    Intelligent Automation & Soft Computing, Vol.36, No.2, pp. 1797-1810, 2023, DOI:10.32604/iasc.2023.034038 - 05 January 2023

    Abstract Recently, gender equality and women’s entrepreneurship have gained considerable attention in global economic development. Prior to the design of any policy interventions to increase women’s entrepreneurship, it is significant to comprehend the factors motivating women to become entrepreneurs. The non-understanding of the factors can result in the endurance of low living standards and the design of expensive and ineffectual policies. But female involvement in entrepreneurship becomes higher in developing economies compared to developed economies. Women Entrepreneurship Index (WEI) plays a vital role in determining the factors that enable the flourishment of high potential female entrepreneurs… More >

  • Open Access

    ARTICLE

    Big Data Analytics with Artificial Intelligence Enabled Environmental Air Pollution Monitoring Framework

    Manar Ahmed Hamza1,*, Hadil Shaiba2, Radwa Marzouk3, Ahmad Alhindi4, Mashael M. Asiri5, Ishfaq Yaseen1, Abdelwahed Motwakel1, Mohammed Rizwanullah1

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 3235-3250, 2022, DOI:10.32604/cmc.2022.029604 - 16 June 2022

    Abstract Environmental sustainability is the rate of renewable resource harvesting, pollution control, and non-renewable resource exhaustion. Air pollution is a significant issue confronted by the environment particularly by highly populated countries like India. Due to increased population, the number of vehicles also continues to increase. Each vehicle has its individual emission rate; however, the issue arises when the emission rate crosses the standard value and the quality of the air gets degraded. Owing to the technological advances in machine learning (ML), it is possible to develop prediction approaches to monitor and control pollution using real time… More >

  • Open Access

    ARTICLE

    Remote Sensing Image Retrieval Based on 3D-Local Ternary Pattern (LTP) Features and Non-subsampled Shearlet Transform (NSST) Domain Statistical Features

    Hilly Gohain Baruah*, Vijay Kumar Nath, Deepika Hazarika

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.1, pp. 137-164, 2022, DOI:10.32604/cmes.2022.018339 - 24 January 2022

    Abstract With the increasing popularity of high-resolution remote sensing images, the remote sensing image retrieval (RSIR) has always been a topic of major issue. A combined, global non-subsampled shearlet transform (NSST)-domain statistical features (NSSTds) and local three dimensional local ternary pattern (3D-LTP) features, is proposed for high-resolution remote sensing images. We model the NSST image coefficients of detail subbands using 2-state laplacian mixture (LM) distribution and its three parameters are estimated using Expectation-Maximization (EM) algorithm. We also calculate the statistical parameters such as subband kurtosis and skewness from detail subbands along with mean and standard deviation… More >

  • Open Access

    ARTICLE

    Securing Privacy Using Optimization and Statistical Models in Cognitive Radio Networks

    R. Neelaveni1,*, B. Sridevi2, J. Sivasankari3

    Computer Systems Science and Engineering, Vol.42, No.2, pp. 523-533, 2022, DOI:10.32604/csse.2022.021433 - 04 January 2022

    Abstract Cognitive Radio Networks (CRN) are the possible and ideal solution for meeting the spectrum needs of next-generation communication systems. CRN is a promising alternative approach that allows spectrum sharing in many applications. The licensed users considered Primary Users (PU) and unlicensed users as Secondary Users (SU). Time and power consumption on security issues are considered degrading factors in performance for improving the Quality of Service (QoS). Irrespective of using different optimization techniques, the same methodology is to be updated for the task. So that, learning and optimization go hand in hand. It ensures the security… More >

  • Open Access

    ARTICLE

    Fast Intra Mode Selection in HEVC Using Statistical Model

    Junaid Tariq1,*, Ayman Alfalou2, Amir Ijaz1, Hashim Ali3, Imran Ashraf1, Hameedur Rahman1, Ammar Armghan4, Inzamam Mashood1, Saad Rehman1

    CMC-Computers, Materials & Continua, Vol.70, No.2, pp. 3903-3918, 2022, DOI:10.32604/cmc.2022.019541 - 27 September 2021

    Abstract Comprehension algorithms like High Efficiency Video Coding (HEVC) facilitates fast and efficient handling of multimedia contents. Such algorithms involve various computation modules that help to reduce the size of content but preserve the same subjective viewing quality. However, the brute-force behavior of HEVC is the biggest hurdle in the communication of multimedia content. Therefore, a novel method will be presented here to accelerate the encoding process of HEVC by making early intra mode decisions for the block. Normally, the HEVC applies 35 intra modes to every block of the frame and selects the best among… More >

  • Open Access

    ARTICLE

    Statistical Model for Impact and Energy Absorption of 3D Printed Coconut Wood-PLA

    J. Kananathan1,2, M. Samykano2,*, K. Kadirgama3, D. Ramasamy2, M. M. Rahman2

    Energy Engineering, Vol.118, No.5, pp. 1305-1315, 2021, DOI:10.32604/EE.2021.016131 - 16 July 2021

    Abstract Fused deposition modeling (FDM)-3D printing has been the favored technology to build functional components in various industries. The present study investigates infill percentage and infill pattern effects on the printed parts’ impact properties through the 3D printing technique using coconut wood-filled PLA composites. Mathematical models are also proposed in the present study with the aim for future property prediction. According to the ASTM standard, fifteen specimens with different parameter combinations were printed using a low-cost FDM 3D printer to evaluate their impact properties. Statistical analysis was performed using MINITAB to validate the experimental data and… More >

  • Open Access

    ARTICLE

    A New Generalized Weibull Model: Classical and Bayesian Estimation

    Mi Zichuan1, Saddam Hussain1, Zubair Ahmad2,*, Omid Kharazmi3, Zahra Almaspoor2

    Computer Systems Science and Engineering, Vol.38, No.1, pp. 79-92, 2021, DOI:10.32604/csse.2021.015146 - 01 April 2021

    Abstract Statistical distributions play a prominent role in applied sciences, particularly in biomedical sciences. The medical data sets are generally skewed to the right, and skewed distributions can be used quite effectively to model such kind of data sets. In the present study, therefore, we propose a new family of distributions suitable for modeling right-skewed medical data sets. The proposed family may be called a new generalized-X family. A special sub-model of the proposed family called a new generalized-Weibull distribution is discussed in detail. The maximum likelihood estimators of the model parameters are obtained. A brief Monte… More >

Displaying 1-10 on page 1 of 15. Per Page