Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (84)
  • Open Access

    ARTICLE

    Computational Homology, Connectedness, and Structure-Property Relations

    Dustin D. Gerrard1, David T. Fullwood1, Denise M. Halverson2, Stephen R. Niezgoda3

    CMC-Computers, Materials & Continua, Vol.15, No.2, pp. 129-152, 2010, DOI:10.3970/cmc.2010.015.129

    Abstract The effective properties of composite materials are often strongly related to the connectivity of the material components. Many structure metrics, and related homogenization theories, do not effectively account for this connectivity. In this paper, relationships between the topology, represented via homology theory, and the effective elastic response of composite plates is investigated. The study is presented in the context of popular structure metrics such as percolation theory and correlation functions. More >

  • Open Access

    ABSTRACT

    Role of distortional and warping stiffness of end regions at 3D performance of concrete bridges

    Z. Bittnar, L. Vrablik, M. Polak, V. Kristek1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.13, No.2, pp. 43-48, 2009, DOI:10.3970/icces.2009.013.043

    Abstract Detail structural and dynamic analysis of concrete suspended bridge structure in Prague which was assessed because of severe damages of parapets and expansion joints is presented. Measured and calculated results are compared and approaches to repairing and stiffening are also recommended. More >

  • Open Access

    ABSTRACT

    Size effect studies on a notched plain concrete beam using initial stiffness method

    B.K. Raghu Prasad1, T.V.R.L. Rao1, A.R. Gopalakrishnan1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.9, No.3, pp. 179-196, 2009, DOI:10.3970/icces.2009.009.179

    Abstract A simple numerical method namely Initial Stiffness Method using finite element method has been employed to study the size effect which is prominent in concrete structures. Numerous experimental investigations performed on notched plain concrete beams subjected to three point or four-point bending have revealed the fracture process to be dependent on size of the structural member. It was found that, the nominal stress at maximum load decreases as the size of the structure increases. The nominal stress at failure on the characteristic dimension of structure is termed as size effect. This has also been explained More >

  • Open Access

    ARTICLE

    Large Deformation Analyses of Space-Frame Structures, Using Explicit Tangent Stiffness Matrices, Based on the Reissner variational principle and a von Karman Type Nonlinear Theory in Rotated Reference Frames

    Yongchang Cai1,2, J.K. Paik3, Satya N. Atluri3

    CMES-Computer Modeling in Engineering & Sciences, Vol.54, No.3, pp. 335-368, 2009, DOI:10.3970/cmes.2009.054.335

    Abstract This paper presents a simple finite element method, based on assumed moments and rotations, for geometrically nonlinear large rotation analyses of space frames consisting of members of arbitrary cross-section. A von Karman type nonlinear theory of deformation is employed in the updated Lagrangian co-rotational reference frame of each beam element, to account for bending, stretching, and torsion of each element. The Reissner variational principle is used in the updated Lagrangian co-rotational reference frame, to derive an explicit expression for the (12x12)symmetrictangent stiffness matrix of the beam element in the co-rotational reference frame. The explicit expression… More >

  • Open Access

    ARTICLE

    Large Deformation Analyses of Space-Frame Structures, with Members of arbitrary Cross-Section, Using Explicit Tangent Stiffness Matrices, Based on a von Karman Type Nonlinear Theory in Rotated Reference Frames

    Yongchang Cai1,2, J.K. Paik3, Satya N. Atluri3

    CMES-Computer Modeling in Engineering & Sciences, Vol.53, No.2, pp. 123-152, 2009, DOI:10.3970/cmes.2009.053.123

    Abstract This paper presents a simple finite element method, based on simple mechanics and physical clarity, for geometrically nonlinear large rotation analyses of space frames consisting of members of arbitrary cross-section. A co-rotational reference frame, involving the axes of each finitely rotated beam finite-element, is used as the Updated Lagrangian reference frame for the respective element. A von Karman type nonlinear theory of deformation is employed in the co-rotational reference frame of each beam element, to account for bending, stretching, and torsion of each element. An assumed displacement approach is used to derive an explicit expression… More >

  • Open Access

    ARTICLE

    Eigen-vibrations of Plates made of Functionally Graded Material

    H. Altenbach1, V. A. Eremeyev2

    CMC-Computers, Materials & Continua, Vol.9, No.2, pp. 153-178, 2009, DOI:10.3970/cmc.2009.009.153

    Abstract Within the framework of the direct approach to the plate theory we consider natural oscillations of plates made of functionally graded materials taking into account both the rotatory inertia and the transverse shear stiffness. It is shown that in some cases the results based on the direct approach differ significantly from the classical estimates. The reason for this is the non-classical computation of the transverse shear stiffness. More >

  • Open Access

    ARTICLE

    A Lie-Group Shooting Method for Simultaneously Estimating the Time-Dependent Damping and Stiffness Coefficients

    Chein-Shan Liu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.27, No.3, pp. 137-150, 2008, DOI:10.3970/cmes.2008.027.137

    Abstract For the inverse vibration problem, a Lie-group shooting method is proposed to simultaneously estimate the time-dependent damping and stiffness functions by using two sets of displacement as inputs. First, we transform these two ODEs into two parabolic type PDEs. Second, we formulate the inverse vibration problem as a multi-dimensional two-point boundary value problem with unknown coefficients, allowing us to develop the Lie-group shooting method. For the semi-discretizations of PDEs we thus obtain two coupled sets of linear algebraic equations, from which the estimation of damping and stiffness coefficients can be written out explicitly. The present More >

  • Open Access

    ARTICLE

    Simultaneously Estimating the Time-Dependent Damping and Stiffness Coefficients with the Aid of Vibrational Data

    Chein-Shan Liu1, Jiang-Ren Chang2, Kai-Huey Chang2, Yung-Wei Chen2

    CMC-Computers, Materials & Continua, Vol.7, No.2, pp. 97-108, 2008, DOI:10.3970/cmc.2008.007.097

    Abstract For the inverse vibration problem a mathematical method is required to determine unknown parameters from the measurement of vibration data. When both damping and stiffness functions are identified, it is a rather difficult problem. In this paper we will propose a feasible method to simultaneously estimate both the time-dependent damping and stiffness coefficients through three mathematical transformations. First, the second-order equation of motion is transformed into a self-adjoint first-order system by using the concept of integrating factor. Then, we transform these two ODEs into two hyperbolic type PDEs. Finally, we apply a one-step group preserving More >

  • Open Access

    ABSTRACT

    Stress Analysis in Layered Aortic Arch model: Influence of Arch Aneurysm and Wall Stiffness

    F. Gao1, D. Tang2∗, Z. Guo3, Makoto Sakamoto4, T. Matsuzawa5

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.1, No.1, pp. 21-28, 2007, DOI:10.3970/icces.2007.001.021

    Abstract Patients with aortic aneurysm, especially aortic arch aneurysm, are prone to aortic dissection. For investigation of the effects of aneurysm and wall stiffness on wall stress distribution, a nonaneurysm arch model as well as an aneurysm arch model was constructed. The fluid structure interaction was implemented in the arch model of aorta. The results show that the stresses are much higher at inflection points in the aneurysm model than in nonaneurysm model, and the stresses at media in stiffened wall are higher than in unstiffened wall. The high composite stress is located at inflection points More >

  • Open Access

    ARTICLE

    Geometric Confinement Influences Cellular Mechanical Properties II -- Intracellular Variances in Polarized Cells

    Judith Su, Ricardo R. Brau, Xingyu Jiang, George M. Whitesides§, Matthew J. Lang, Peter T. C. So||

    Molecular & Cellular Biomechanics, Vol.4, No.2, pp. 105-118, 2007, DOI:10.3970/mcb.2007.004.105

    Abstract During migration, asymmetrically polarized cells achieve motion by coordinating the protrusion and retraction of their leading and trailing edges, respectively. Although it is well known that local changes in the dynamics of actin cytoskeleton remodeling drive these processes, neither the cytoskeletal rheological properties of these migrating cells are well quantified nor is it understand how these rheological properties are regulated by underlying molecular processes. In this report, we have used soft lithography to create morphologically polarized cells in order to examine rheological differences between the front and rear zone of an NIH 3T3 cell posed More >

Displaying 71-80 on page 8 of 84. Per Page