Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (225)
  • Open Access

    ARTICLE

    An Adaptive Control Strategy for Energy Storage Interface Converter Based on Analogous Virtual Synchronous Generator

    Feng Zhao, Jinshuo Zhang*, Xiaoqiang Chen, Ying Wang

    Energy Engineering, Vol.121, No.2, pp. 339-358, 2024, DOI:10.32604/ee.2023.043082 - 25 January 2024

    Abstract In the DC microgrid, the lack of inertia and damping in power electronic converters results in poor stability of DC bus voltage and low inertia of the DC microgrid during fluctuations in load and photovoltaic power. To address this issue, the application of a virtual synchronous generator (VSG) in grid-connected inverters control is referenced and proposes a control strategy called the analogous virtual synchronous generator (AVSG) control strategy for the interface DC/DC converter of the battery in the microgrid. Besides, a flexible parameter adaptive control method is introduced to further enhance the inertial behavior of… More >

  • Open Access

    ARTICLE

    Automatic SOC Equalization Strategy of Energy Storage Units with DC Microgrid Bus Voltage Support

    Jingjing Tian1, Shenglin Mo1,*, Feng Zhao1, Xiaoqiang Chen2

    Energy Engineering, Vol.121, No.2, pp. 439-459, 2024, DOI:10.32604/ee.2023.029956 - 25 January 2024

    Abstract In this paper, an improved sag control strategy based on automatic SOC equalization is proposed to solve the problems of slow SOC equalization and excessive bus voltage fluctuation amplitude and offset caused by load and PV power variations in a stand-alone DC microgrid. The strategy includes primary and secondary control. Among them, the primary control suppresses the DC microgrid voltage fluctuation through the Ⅰ and Ⅱ section control, and the secondary control aims to correct the P-U curve of the energy storage system and the PV system, thus reducing the steady-state bus voltage excursion. The simulation More >

  • Open Access

    ARTICLE

    A Temporary Frequency Response Strategy Using a Voltage Source-Based Permanent Magnet Synchronous Generator and Energy Storage Systems

    Baogang Chen1, Fenglin Miao2,*, Jing Yang1, Chen Qi2, Wenyan Ji1

    Energy Engineering, Vol.121, No.2, pp. 541-555, 2024, DOI:10.32604/ee.2023.028327 - 25 January 2024

    Abstract Energy storage systems (ESS) and permanent magnet synchronous generators (PMSG) are speculated to be able to exhibit frequency regulation capabilities by adding differential and proportional control loops with different control objectives. The available PMSG kinetic energy and charging/discharging capacities of the ESS were restricted. To improve the inertia response and frequency control capability, we propose a short-term frequency support strategy for the ESS and PMSG. To this end, the weights were embedded in the control loops to adjust the participation of the differential and proportional controls based on the system frequency excursion. The effectiveness of More >

  • Open Access

    ARTICLE

    Modeling of Large-Scale Hydrogen Storage System Considering Capacity Attenuation and Analysis of Its Efficiency Characteristics

    Junhui Li1, Haotian Zhang1, Cuiping Li1,*, Xingxu Zhu1, Ruitong Liu2, Fangwei Duan2, Yongming Peng3

    Energy Engineering, Vol.121, No.2, pp. 291-313, 2024, DOI:10.32604/ee.2023.027593 - 25 January 2024

    Abstract In the existing power system with a large-scale hydrogen storage system, there are problems such as low efficiency of electric-hydrogen-electricity conversion and single modeling of the hydrogen storage system. In order to improve the hydrogen utilization rate of hydrogen storage system in the process of participating in the power grid operation, and speed up the process of electric-hydrogen-electricity conversion. This article provides a detailed introduction to the mathematical and electrical models of various components of the hydrogen storage unit, and also establishes a charging and discharging efficiency model that considers the temperature and internal gas… More >

  • Open Access

    ARTICLE

    Ellagic Acid Enhances Antioxidant System Activity and Maintains the Quality of Strawberry Fruit during Storage

    Jian Chen1, Jing Zhang2, Gang Pan3, Dandan Huang1,*, Shuhua Zhu1

    Phyton-International Journal of Experimental Botany, Vol.93, No.1, pp. 15-28, 2024, DOI:10.32604/phyton.2023.045621 - 26 January 2024

    Abstract Ellagic acid (EA) is a natural antioxidant, widely present in a lot of forms’ soft fruits, nuts, and other plant tissues, and helpful for promoting human health; however, its protective effect on postharvest fruit and improving the quality index of postharvest fruit have rarely been studied. In this experiment, the strawberries were soaked in 0, 100, 200, 300, 400, and 500 mg L−1 EA, respectively, and the influential EA on fruit quality and the antioxidant system of strawberries were studied. Compared with the control, EA treatment can reduce the browning degree and rotting rate of strawberry… More >

  • Open Access

    ARTICLE

    An Evidence-Based CoCoSo Framework with Double Hierarchy Linguistic Data for Viable Selection of Hydrogen Storage Methods

    Raghunathan Krishankumar1, Dhruva Sundararajan2, K. S. Ravichandran2, Edmundas Kazimieras Zavadskas3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2845-2872, 2024, DOI:10.32604/cmes.2023.029438 - 15 December 2023

    Abstract Hydrogen is the new age alternative energy source to combat energy demand and climate change. Storage of hydrogen is vital for a nation’s growth. Works of literature provide different methods for storing the produced hydrogen, and the rational selection of a viable method is crucial for promoting sustainability and green practices. Typically, hydrogen storage is associated with diverse sustainable and circular economy (SCE) criteria. As a result, the authors consider the situation a multi-criteria decision-making (MCDM) problem. Studies infer that previous models for hydrogen storage method (HSM) selection (i) do not consider preferences in the… More >

  • Open Access

    REVIEW

    Mini Review on PEDOT:PSS as a Conducting Material in Energy Harvesting and Storage Devices Applications

    HYUNGSUB YOONa,*, HEEBO HAa, CHUNGHYEON CHOIa, TAE GWANG YUNb, BYUNGIL HWANGa

    Journal of Polymer Materials, Vol.40, No.1-2, pp. 1-17, 2023, DOI:10.32381/JPM.2023.40.1-2.1

    Abstract Poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS), one of the conducting polymers, is widely used as a conducting material in various applications. PEDOT:PSS possesses high electrical conductivity, optical transparency in visible light range, good chemical and physical stability in ambient state, etc. Furthermore, PEDOT:PSS offers the advantages of flexibility and possibility of solution-based process, which makes it suitable for use in flexible electronic devices. In this mini review, the applications of PEDOT:PSS as a conductive parts in energy harvesting and storage technologies are discussed and summarized. More >

  • Open Access

    PROCEEDINGS

    Key Transport Mechanisms in Supercritical CO2 Based Pilot Micromodels Subjected to Bottom Heat and Mass Diffusion

    Karim Ragui1, Mengshuai Chen1,2, Lin Chen1,2,3,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.3, pp. 1-2, 2023, DOI:10.32604/icces.2023.010378

    Abstract The ambiguous dynamics associated with heat and mass transfer of invading carbon dioxide in sub-critical and supercritical states, as well as the response of pore-scale resident fluids, play a key role in understanding CO2 capture and storage (CCUS) and the corresponding phase equilibrium mechanisms. To this end, this paper reveals the transport mechanisms of invading supercritical carbon dioxide (sCO2) in polluted micromodels using a variant of Lattice-Boltzmann Color Fluid model and descriptive experimental data. The breakthrough time is evaluated by characterizing the displacement velocity, the capillary to pressuredifference ratio, and the transient heat and mass diffusion More >

  • Open Access

    REVIEW

    Review of Black Start on New Power System Based on Energy Storage Technology

    Jin Fan1, Litao Niu2, Cuiping Li3, Gang Zhang2, He Li3, Yiming Wang3, Junhui Li3,*, Qinglong Song3, Jiacheng Sun3, Jianglong Pan4, Fangfang Lai4

    Energy Engineering, Vol.120, No.12, pp. 2857-2878, 2023, DOI:10.32604/ee.2023.029740 - 29 November 2023

    Abstract With the continuous development of new energy generation technology and the increasingly complex power grid environment, the traditional black start scheme cannot meet the requirements of today’s power grid in order to ensure the stable operation of the power system can be restored quickly in the face of large power outages, so a more complete black start scheme needs to be developed to cope with the new power system. With the development of energy storage technology, the limitations of the traditional black-start scheme can be solved by new energy farms with energy storage configuration. Therefore, More > Graphic Abstract

    Review of Black Start on New Power System Based on Energy Storage Technology

  • Open Access

    ARTICLE

    Investigation of Particle Breakdown in the Production of Composite Magnesium Chloride and Zeolite Based Thermochemical Energy Storage Materials

    Louis F. Marie*, Karina Sałek, Tadhg S. O’Donovan

    Energy Engineering, Vol.120, No.10, pp. 2193-2209, 2023, DOI:10.32604/ee.2023.043075 - 28 September 2023

    Abstract Composite thermochemical energy storage (TCES) represents an exciting field of thermal energy storage which could address the issue of seasonal variance in renewable energy supply. However, there are open questions about their performance and the root cause of some observed phenomena. Some researchers have observed the breakdown of particles in their production phase, and in their use. This study seeks to investigate the underlying cause of this breakdown. SEM and EDX analysis have been conducted on MgCl2 impregnated 13X zeolite composites of differing diameters, as well as LiX zeolite. This was done in order to study… More > Graphic Abstract

    Investigation of Particle Breakdown in the Production of Composite Magnesium Chloride and Zeolite Based Thermochemical Energy Storage Materials

Displaying 41-50 on page 5 of 225. Per Page