Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    Evaluating the Efficacy of Latent Variables in Mitigating Data Poisoning Attacks in the Context of Bayesian Networks: An Empirical Study

    Shahad Alzahrani1, Hatim Alsuwat2, Emad Alsuwat3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 1635-1654, 2024, DOI:10.32604/cmes.2023.044718

    Abstract Bayesian networks are a powerful class of graphical decision models used to represent causal relationships among variables. However, the reliability and integrity of learned Bayesian network models are highly dependent on the quality of incoming data streams. One of the primary challenges with Bayesian networks is their vulnerability to adversarial data poisoning attacks, wherein malicious data is injected into the training dataset to negatively influence the Bayesian network models and impair their performance. In this research paper, we propose an efficient framework for detecting data poisoning attacks against Bayesian network structure learning algorithms. Our framework utilizes latent variables to quantify… More >

  • Open Access

    ARTICLE

    Self-Awakened Particle Swarm Optimization BN Structure Learning Algorithm Based on Search Space Constraint

    Kun Liu1,2, Peiran Li3, Yu Zhang1,*, Jia Ren1, Xianyu Wang2, Uzair Aslam Bhatti1

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 3257-3274, 2023, DOI:10.32604/cmc.2023.039430

    Abstract To obtain the optimal Bayesian network (BN) structure, researchers often use the hybrid learning algorithm that combines the constraint-based (CB) method and the score-and-search (SS) method. This hybrid method has the problem that the search efficiency could be improved due to the ample search space. The search process quickly falls into the local optimal solution, unable to obtain the global optimal. Based on this, the Particle Swarm Optimization (PSO) algorithm based on the search space constraint process is proposed. In the first stage, the method uses dynamic adjustment factors to constrain the structure search space and enrich the diversity of… More >

  • Open Access

    ARTICLE

    BN-GEPSO: Learning Bayesian Network Structure Using Generalized Particle Swarm Optimization

    Muhammad Saad Salman1, Ibrahim M. Almanjahie2,3, AmanUllah Yasin1, Ammara Nawaz Cheema1,*

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 4217-4229, 2023, DOI:10.32604/cmc.2023.034960

    Abstract At present Bayesian Networks (BN) are being used widely for demonstrating uncertain knowledge in many disciplines, including biology, computer science, risk analysis, service quality analysis, and business. But they suffer from the problem that when the nodes and edges increase, the structure learning difficulty increases and algorithms become inefficient. To solve this problem, heuristic optimization algorithms are used, which tend to find a near-optimal answer rather than an exact one, with particle swarm optimization (PSO) being one of them. PSO is a swarm intelligence-based algorithm having basic inspiration from flocks of birds (how they search for food). PSO is employed… More >

  • Open Access

    ARTICLE

    Network Traffic Prediction Using Radial Kernelized-Tversky Indexes-Based Multilayer Classifier

    M. Govindarajan1,*, V. Chandrasekaran2, S. Anitha3

    Computer Systems Science and Engineering, Vol.40, No.3, pp. 851-863, 2022, DOI:10.32604/csse.2022.019298

    Abstract Accurate cellular network traffic prediction is a crucial task to access Internet services for various devices at any time. With the use of mobile devices, communication services generate numerous data for every moment. Given the increasing dense population of data, traffic learning and prediction are the main components to substantially enhance the effectiveness of demand-aware resource allocation. A novel deep learning technique called radial kernelized LSTM-based connectionist Tversky multilayer deep structure learning (RKLSTM-CTMDSL) model is introduced for traffic prediction with superior accuracy and minimal time consumption. The RKLSTM-CTMDSL model performs attribute selection and classification processes for cellular traffic prediction. In… More >

Displaying 1-10 on page 1 of 4. Per Page