Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Machine Learning-Driven Prediction of the Glass Transition Temperature of Styrene-Butadiene Rubber

    Zhanglei Wang1,2, Shuo Yan1,2, Jingyu Gao1,2, Haoyu Wu1,2, Baili Wang1,2, Xiuying Zhao1,2,*, Shikai Hu1,2,*

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.075667 - 10 February 2026

    Abstract The glass transition temperature (Tg) of styrene-butadiene rubber (SBR) is a key parameter determining its low-temperature flexibility and processing performance. Accurate prediction of Tg is crucial for material design and application optimisation. Addressing the limitations of traditional experimental measurements and theoretical models in terms of efficiency, cost, and accuracy, this study proposes a machine learning prediction framework that integrates multi-model ensemble and Bayesian optimization by constructing a multi-component feature dataset and algorithm optimization strategy. Based on the constructed high-quality dataset containing 96 SBR samples, nine machine learning models were employed to predict the Tg of SBR and… More >

  • Open Access

    PROCEEDINGS

    Impact Response of Hybrid Laminates Made with GFRP, TPU and Rubber

    Muhd Azimin bin Ab Ghani1, Zhongwei Guan2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.011074

    Abstract Thermoplastic polyurethane (TPU) offers a superior impact and perforation resistance. This paper presents a study on manufacturing a range of hybrid laminated structures made of TPU, glass fibre reinforced plastic (GFRP), styrene-butadiene rubber (SBR) and metal mesh materials, and further on investigating the structural response of the TPU based composite sandwich laminated structures. These laminated structures were tested under quasi-static perforation and low velocity impact loading to determine their structural responses and energy absorption characteristics. It has been shown that three-layer and five-layer laminates with lay-ups of GFRP-TPU-GFRP or TPU-GFRP-TPU and GFRP-TPU-GFRP-TPU-GFRP or TPU-GFRP-TPU-GFRP-TPU subjected… More >

Displaying 1-10 on page 1 of 2. Per Page