Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access


    Analysis of Sub-Synchronous Oscillation of Virtual Synchronous Generator and Research on Suppression Strategy in Weak Grid

    Chongyang Zhao, Wei Chai, Beibei Rui, Lin Chen*

    Energy Engineering, Vol.120, No.11, pp. 2683-2705, 2023, DOI:10.32604/ee.2023.029620

    Abstract At present, the direct drive permanent magnet synchronous generator (DD-PMSG) grid connected system based on virtual synchronous generator (VSG) control will experience power oscillation at sub synchronous frequencies. The mechanism and characteristics of this new type of sub-synchronous interaction (SSI) are not yet clear, and the system cannot recover to steady state solely based on the characteristics of VSG itself. Especially when connected to a weak current network, oscillations are more pronounced, affecting the stability of the system. In severe cases, the system may trigger shutdown protection and be disconnected from the network. Existing research has only analyzed the oscillation… More >

  • Open Access


    Application of Hankel Dynamic Mode Decomposition for Wide Area Monitoring of Subsynchronous Resonance

    Lei Wang1, Tiecheng Li1, Hui Fan2, Xuekai Hu1, Lin Yang3, Xiaomei Yang3,*

    Energy Engineering, Vol.120, No.4, pp. 851-867, 2023, DOI:10.32604/ee.2023.025383

    Abstract In recent years, subsynchronous resonance (SSR) has frequently occurred in DFIG-connected series-compensated systems. For the analysis and prevention, it is of great importance to achieve wide area monitoring of the incident. This paper presents a Hankel dynamic mode decomposition (DMD) method to identify SSR parameters using synchrophasor data. The basic idea is to employ the DMD technique to explore the subspace of Hankel matrices constructed by synchrophasors. It is analytically demonstrated that the subspace of these Hankel matrices is a combination of fundamental and SSR modes. Therefore, the SSR parameters can be calculated once the modal parameter is extracted. Compared… More >

Displaying 1-10 on page 1 of 2. Per Page