Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (188)
  • Open Access

    ARTICLE

    An Adaptive Features Fusion Convolutional Neural Network for Multi-Class Agriculture Pest Detection

    Muhammad Qasim1,2, Syed M. Adnan Shah1, Qamas Gul Khan Safi1, Danish Mahmood2, Adeel Iqbal3,*, Ali Nauman3, Sung Won Kim3,*

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 4429-4445, 2025, DOI:10.32604/cmc.2025.065060 - 19 May 2025

    Abstract Grains are the most important food consumed globally, yet their yield can be severely impacted by pest infestations. Addressing this issue, scientists and researchers strive to enhance the yield-to-seed ratio through effective pest detection methods. Traditional approaches often rely on preprocessed datasets, but there is a growing need for solutions that utilize real-time images of pests in their natural habitat. Our study introduces a novel two-step approach to tackle this challenge. Initially, raw images with complex backgrounds are captured. In the subsequent step, feature extraction is performed using both hand-crafted algorithms (Haralick, LBP, and Color… More >

  • Open Access

    ARTICLE

    Advanced Techniques for Dynamic Malware Detection and Classification in Digital Security Using Deep Learning

    Taher Alzahrani*

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 4575-4606, 2025, DOI:10.32604/cmc.2025.063448 - 19 May 2025

    Abstract The rapid evolution of malware presents a critical cybersecurity challenge, rendering traditional signature-based detection methods ineffective against novel variants. This growing threat affects individuals, organizations, and governments, highlighting the urgent need for robust malware detection mechanisms. Conventional machine learning-based approaches rely on static and dynamic malware analysis and often struggle to detect previously unseen threats due to their dependency on predefined signatures. Although machine learning algorithms (MLAs) offer promising detection capabilities, their reliance on extensive feature engineering limits real-time applicability. Deep learning techniques mitigate this issue by automating feature extraction but may introduce computational overhead,… More >

  • Open Access

    ARTICLE

    Utilizing Machine Learning and SHAP Values for Improved and Transparent Energy Usage Predictions

    Faisal Ghazi Beshaw1, Thamir Hassan Atyia2, Mohd Fadzli Mohd Salleh1, Mohamad Khairi Ishak3, Abdul Sattar Din1,*

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 3553-3583, 2025, DOI:10.32604/cmc.2025.061400 - 16 April 2025

    Abstract The significance of precise energy usage forecasts has been highlighted by the increasing need for sustainability and energy efficiency across a range of industries. In order to improve the precision and openness of energy consumption projections, this study investigates the combination of machine learning (ML) methods with Shapley additive explanations (SHAP) values. The study evaluates three distinct models: the first is a Linear Regressor, the second is a Support Vector Regressor, and the third is a Decision Tree Regressor, which was scaled up to a Random Forest Regressor/Additions made were the third one which was… More >

  • Open Access

    ARTICLE

    kProtoClust: Towards Adaptive k-Prototype Clustering without Known k

    Yuan Ping1,2,*, Huina Li1, Chun Guo3, Bin Hao4

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4949-4976, 2025, DOI:10.32604/cmc.2025.057693 - 06 March 2025

    Abstract Towards optimal k-prototype discovery, k-means-like algorithms give us inspirations of central samples collection, yet the unstable seed samples selection, the hypothesis of a circle-like pattern, and the unknown K are still challenges, particularly for non-predetermined data patterns. We propose an adaptive k-prototype clustering method (kProtoClust) which launches cluster exploration with a sketchy division of K clusters and finds evidence for splitting and merging. On behalf of a group of data samples, support vectors and outliers from the perspective of support vector data description are not the appropriate candidates for prototypes, while inner samples become the first candidates for… More >

  • Open Access

    ARTICLE

    Deep Learning and Machine Learning Architectures for Dementia Detection from Speech in Women

    Ahlem Walha1, Amel Ksibi2,*, Mohammed Zakariah3,*, Manel Ayadi2, Tagrid Alshalali2, Oumaima Saidani2, Leila Jamel2, Nouf Abdullah Almujally2

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.3, pp. 2959-3001, 2025, DOI:10.32604/cmes.2025.060545 - 03 March 2025

    Abstract Dementia is a neurological disorder that affects the brain and its functioning, and women experience its effects more than men do. Preventive care often requires non-invasive and rapid tests, yet conventional diagnostic techniques are time-consuming and invasive. One of the most effective ways to diagnose dementia is by analyzing a patient’s speech, which is cheap and does not require surgery. This research aims to determine the effectiveness of deep learning (DL) and machine learning (ML) structures in diagnosing dementia based on women’s speech patterns. The study analyzes data drawn from the Pitt Corpus, which contains… More >

  • Open Access

    ARTICLE

    A New Approach for the Calculation of Slope Failure Probability with Fuzzy Limit-State Functions

    Jianing Hao1, Dan Yang2, Guanxiong Ren1, Ying Zhao3, Rangling Cao4,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.1, pp. 141-159, 2025, DOI:10.32604/fdmp.2024.054469 - 24 January 2025

    Abstract This study presents an innovative approach to calculating the failure probability of slopes by incorporating fuzzy limit-state functions, a method that significantly enhances the accuracy and efficiency of slope stability analysis. Unlike traditional probabilistic techniques, this approach utilizes a least squares support vector machine (LSSVM) optimized with a grey wolf optimizer (GWO) and K-fold cross-validation (CV) to approximate the limit-state function, thus reducing computational complexity. The novelty of this work lies in its application to one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) slope models, demonstrating its versatility and high precision. The proposed method consistently achieves… More > Graphic Abstract

    A New Approach for the Calculation of Slope Failure Probability with Fuzzy Limit-State Functions

  • Open Access

    ARTICLE

    A Support Vector Machine (SVM) Model for Privacy Recommending Data Processing Model (PRDPM) in Internet of Vehicles

    Ali Alqarni*

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 389-406, 2025, DOI:10.32604/cmc.2024.059238 - 03 January 2025

    Abstract Open networks and heterogeneous services in the Internet of Vehicles (IoV) can lead to security and privacy challenges. One key requirement for such systems is the preservation of user privacy, ensuring a seamless experience in driving, navigation, and communication. These privacy needs are influenced by various factors, such as data collected at different intervals, trip durations, and user interactions. To address this, the paper proposes a Support Vector Machine (SVM) model designed to process large amounts of aggregated data and recommend privacy-preserving measures. The model analyzes data based on user demands and interactions with service More >

  • Open Access

    ARTICLE

    Joint Estimation of SOH and RUL for Lithium-Ion Batteries Based on Improved Twin Support Vector Machineh

    Liyao Yang1, Hongyan Ma1,2,3,*, Yingda Zhang1, Wei He1

    Energy Engineering, Vol.122, No.1, pp. 243-264, 2025, DOI:10.32604/ee.2024.057500 - 27 December 2024

    Abstract Accurately estimating the State of Health (SOH) and Remaining Useful Life (RUL) of lithium-ion batteries (LIBs) is crucial for the continuous and stable operation of battery management systems. However, due to the complex internal chemical systems of LIBs and the nonlinear degradation of their performance, direct measurement of SOH and RUL is challenging. To address these issues, the Twin Support Vector Machine (TWSVM) method is proposed to predict SOH and RUL. Initially, the constant current charging time of the lithium battery is extracted as a health indicator (HI), decomposed using Variational Modal Decomposition (VMD), and… More >

  • Open Access

    ARTICLE

    Machine Learning Techniques in Predicting Hot Deformation Behavior of Metallic Materials

    Petr Opěla1,*, Josef Walek1,*, Jaromír Kopeček2

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.1, pp. 713-732, 2025, DOI:10.32604/cmes.2024.055219 - 17 December 2024

    Abstract In engineering practice, it is often necessary to determine functional relationships between dependent and independent variables. These relationships can be highly nonlinear, and classical regression approaches cannot always provide sufficiently reliable solutions. Nevertheless, Machine Learning (ML) techniques, which offer advanced regression tools to address complicated engineering issues, have been developed and widely explored. This study investigates the selected ML techniques to evaluate their suitability for application in the hot deformation behavior of metallic materials. The ML-based regression methods of Artificial Neural Networks (ANNs), Support Vector Machine (SVM), Decision Tree Regression (DTR), and Gaussian Process Regression More >

  • Open Access

    ARTICLE

    A Hybrid WSVM-Levy Approach for Energy-Efficient Manufacturing Using Big Data and IoT

    Surbhi Bhatia Khan1,2,*, Mohammad Alojail3, Mahesh Thyluru Ramakrishna4, Hemant Sharma5

    CMC-Computers, Materials & Continua, Vol.81, No.3, pp. 4895-4914, 2024, DOI:10.32604/cmc.2024.057585 - 19 December 2024

    Abstract In Intelligent Manufacturing, Big Data and industrial information enable enterprises to closely monitor and respond to precise changes in both internal processes and external environmental factors, ensuring more informed decision-making and adaptive system management. It also promotes decision making and provides scientific analysis to enhance the efficiency of the operation, cost reduction, maximizing the process of production and so on. Various methods are employed to enhance productivity, yet achieving sustainable manufacturing remains a complex challenge that requires careful consideration. This study aims to develop a methodology for effective manufacturing sustainability by proposing a novel Hybrid… More >

Displaying 1-10 on page 1 of 188. Per Page