Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (31)
  • Open Access


    Adaptive Network Sustainability and Defense Based on Artificial Bees Colony Optimization Algorithm for Nature Inspired Cyber Security

    Chirag Ganguli1, Shishir Kumar Shandilya2, Michal Gregus3, Oleh Basystiuk4,*

    Computer Systems Science and Engineering, Vol.48, No.3, pp. 739-758, 2024, DOI:10.32604/csse.2024.042607

    Abstract Cyber Defense is becoming a major issue for every organization to keep business continuity intact. The presented paper explores the effectiveness of a meta-heuristic optimization algorithm-Artificial Bees Colony Algorithm (ABC) as an Nature Inspired Cyber Security mechanism to achieve adaptive defense. It experiments on the Denial-Of-Service attack scenarios which involves limiting the traffic flow for each node. Businesses today have adapted their service distribution models to include the use of the Internet, allowing them to effectively manage and interact with their customer data. This shift has created an increased reliance on online services to store… More >

  • Open Access


    Ensemble Deep Learning Based Air Pollution Prediction for Sustainable Smart Cities

    Maha Farouk Sabir1, Mahmoud Ragab2,3,*, Adil O. Khadidos2, Khaled H. Alyoubi1, Alaa O. Khadidos1,4

    Computer Systems Science and Engineering, Vol.48, No.3, pp. 627-643, 2024, DOI:10.32604/csse.2023.041551

    Abstract Big data and information and communication technologies can be important to the effectiveness of smart cities. Based on the maximal attention on smart city sustainability, developing data-driven smart cities is newly obtained attention as a vital technology for addressing sustainability problems. Real-time monitoring of pollution allows local authorities to analyze the present traffic condition of cities and make decisions. Relating to air pollution occurs a main environmental problem in smart city environments. The effect of the deep learning (DL) approach quickly increased and penetrated almost every domain, comprising air pollution forecast. Therefore, this article develops… More >

  • Open Access


    Optimizing Sustainability: Exergoenvironmental Analysis of a Multi-Effect Distillation with Thermal Vapor Compression System for Seawater Desalination

    Zineb Fergani1, Zakaria Triki1, Rabah Menasri1, Hichem Tahraoui1,2,*, Meriem Zamouche3, Mohammed Kebir4, Jie Zhang5, Abdeltif Amrane6,*

    Frontiers in Heat and Mass Transfer, Vol.22, No.2, pp. 455-473, 2024, DOI:10.32604/fhmt.2024.050332

    Abstract Seawater desalination stands as an increasingly indispensable solution to address global water scarcity issues. This study conducts a thorough exergoenvironmental analysis of a multi-effect distillation with thermal vapor compression (MED-TVC) system, a highly promising desalination technology. The MED-TVC system presents an energy-efficient approach to desalination by harnessing waste heat sources and incorporating thermal vapor compression. The primary objective of this research is to assess the system’s thermodynamic efficiency and environmental impact, considering both energy and exergy aspects. The investigation delves into the intricacies of energy and exergy losses within the MED-TVC process, providing a holistic… More >

  • Open Access


    A Novel Hybrid Ensemble Learning Approach for Enhancing Accuracy and Sustainability in Wind Power Forecasting

    Farhan Ullah1, Xuexia Zhang1,*, Mansoor Khan2, Muhammad Abid3,*, Abdullah Mohamed4

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 3373-3395, 2024, DOI:10.32604/cmc.2024.048656

    Abstract Accurate wind power forecasting is critical for system integration and stability as renewable energy reliance grows. Traditional approaches frequently struggle with complex data and non-linear connections. This article presents a novel approach for hybrid ensemble learning that is based on rigorous requirements engineering concepts. The approach finds significant parameters influencing forecasting accuracy by evaluating real-time Modern-Era Retrospective Analysis for Research and Applications (MERRA2) data from several European Wind farms using in-depth stakeholder research and requirements elicitation. Ensemble learning is used to develop a robust model, while a temporal convolutional network handles time-series complexities and data… More >

  • Open Access


    Impact on Mechanical Properties of Surface Treated Coconut Leaf Sheath Fiber/Sic Nano Particles Reinforced Phenol-formaldehyde Polymer Composites


    Journal of Polymer Materials, Vol.40, No.1-2, pp. 71-82, 2023, DOI:10.32381/JPM.2023.40.1-2.6

    Abstract Several agro-wastes are rich in natural fibers and finds scope to be used as reinforcement in composite industry. These natural fibers have some advantages over man-made fibers, including low cost, light weight, renewable nature, high specific strength and modulus, and availability in various forms worldwide. In this paper, the effect of surface modification of leaf sheath coconut fiber (LSF) (an agro-waste) reinforced in phenol formaldehyde matrix composites with silicon carbide (SiC) nano particles as filler material were investigated for its mechanical characteristics. The investigation portrays that coconut LSF (CLSF) modified with potassium permanganate reinforced polymer More >

  • Open Access


    The Application of Solid Waste in Thermal Insulation Materials: A Review

    Ming Liu1, Pinghua Zhu2,*, Xiancui Yan2, Haichao Li2, Xintong Chen2

    Journal of Renewable Materials, Vol.12, No.2, pp. 329-347, 2024, DOI:10.32604/jrm.2023.045381

    Abstract As socioeconomic development continues, the issue of building energy consumption has attracted significant attention, and improving the thermal insulation performance of buildings has become a crucial strategic measure. Simultaneously, the application of solid waste in insulation materials has also become a hot topic. This paper reviews the sources and classifications of solid waste, focusing on research progress in its application as insulation materials in the domains of daily life, agriculture, and industry. The research shows that incorporating household solid waste materials, such as waste glass, paper, and clothing scraps into cementitious thermal insulation can significantly… More >

  • Open Access


    An Evidence-Based CoCoSo Framework with Double Hierarchy Linguistic Data for Viable Selection of Hydrogen Storage Methods

    Raghunathan Krishankumar1, Dhruva Sundararajan2, K. S. Ravichandran2, Edmundas Kazimieras Zavadskas3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2845-2872, 2024, DOI:10.32604/cmes.2023.029438

    Abstract Hydrogen is the new age alternative energy source to combat energy demand and climate change. Storage of hydrogen is vital for a nation’s growth. Works of literature provide different methods for storing the produced hydrogen, and the rational selection of a viable method is crucial for promoting sustainability and green practices. Typically, hydrogen storage is associated with diverse sustainable and circular economy (SCE) criteria. As a result, the authors consider the situation a multi-criteria decision-making (MCDM) problem. Studies infer that previous models for hydrogen storage method (HSM) selection (i) do not consider preferences in the… More >

  • Open Access


    Suitability and Sustainability of Rainwater Quality Monitoring System in Cistern for Domestic Use

    Kenedy A. Greyson*

    Journal on Internet of Things, Vol.5, pp. 1-11, 2023, DOI:10.32604/jiot.2023.040255

    Abstract Rainwater harvesting (RWH) systems have been the source of domestic water for many years and still becoming essential in many communities of developing countries. However, due to various reasons, there are several sources of contamination in the rainwater cistern systems. Dissolved chemicals from the roofing, storage, and conveyance materials, together with the suspended particulate matter from the airborne, are examples of water contamination. In this work, the water quality monitoring system has been designed and implemented. Chemical and physical parameters of water samples were collected from three locations using a data acquisition (DAQ) system and More >

  • Open Access


    Predictive Multimodal Deep Learning-Based Sustainable Renewable and Non-Renewable Energy Utilization

    Abdelwahed Motwakel1,*, Marwa Obayya2, Nadhem Nemri3, Khaled Tarmissi4, Heba Mohsen5, Mohammed Rizwanulla6, Ishfaq Yaseen6, Abu Sarwar Zamani6

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 1267-1281, 2023, DOI:10.32604/csse.2023.037735

    Abstract Recently, renewable energy (RE) has become popular due to its benefits, such as being inexpensive, low-carbon, ecologically friendly, steady, and reliable. The RE sources are gradually combined with non-renewable energy (NRE) sources into electric grids to satisfy energy demands. Since energy utilization is highly related to national energy policy, energy prediction using artificial intelligence (AI) and deep learning (DL) based models can be employed for energy prediction on RE and NRE power resources. Predicting energy consumption of RE and NRE sources using effective models becomes necessary. With this motivation, this study presents a new multimodal… More >

  • Open Access


    Forecasting the Municipal Solid Waste Using GSO-XGBoost Model

    Vaishnavi Jayaraman1, Arun Raj Lakshminarayanan1,*, Saravanan Parthasarathy1, A. Suganthy2

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 301-320, 2023, DOI:10.32604/iasc.2023.037823

    Abstract Waste production rises in tandem with population growth and increased utilization. The indecorous disposal of waste paves the way for huge disaster named as climate change. The National Environment Agency (NEA) of Singapore oversees the sustainable management of waste across the country. The three main contributors to the solid waste of Singapore are paper and cardboard (P&C), plastic, and food scraps. Besides, they have a negligible rate of recycling. In this study, Machine Learning techniques were utilized to forecast the amount of garbage also known as waste audits. The waste audit would aid the authorities… More >

Displaying 1-10 on page 1 of 31. Per Page