Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (43)
  • Open Access

    ARTICLE

    Dung Beetle Optimization Algorithm Based on Bounded Reflection Optimization and Multi-Strategy Fusion for Multi-UAV Trajectory Planning

    Weicong Tan1,#, Qiwu Wu2,3,#,*, Lingzhi Jiang1, Tao Tong2, Yunchen Su2

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 3621-3652, 2025, DOI:10.32604/cmc.2025.068781 - 23 September 2025

    Abstract This study introduces a novel algorithm known as the dung beetle optimization algorithm based on bounded reflection optimization and multi-strategy fusion (BFDBO), which is designed to tackle the complexities associated with multi-UAV collaborative trajectory planning in intricate battlefield environments. Initially, a collaborative planning cost function for the multi-UAV system is formulated, thereby converting the trajectory planning challenge into an optimization problem. Building on the foundational dung beetle optimization (DBO) algorithm, BFDBO incorporates three significant innovations: a boundary reflection mechanism, an adaptive mixed exploration strategy, and a dynamic multi-scale mutation strategy. These enhancements are intended to… More >

  • Open Access

    ARTICLE

    Enhanced Coverage Path Planning Strategies for UAV Swarms Based on SADQN Algorithm

    Zhuoyan Xie1, Qi Wang1,*, Bin Kong2,*, Shang Gao1

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 3013-3027, 2025, DOI:10.32604/cmc.2025.064147 - 03 July 2025

    Abstract In the current era of intelligent technologies, comprehensive and precise regional coverage path planning is critical for tasks such as environmental monitoring, emergency rescue, and agricultural plant protection. Owing to their exceptional flexibility and rapid deployment capabilities, unmanned aerial vehicles (UAVs) have emerged as the ideal platforms for accomplishing these tasks. This study proposes a swarm A*-guided Deep Q-Network (SADQN) algorithm to address the coverage path planning (CPP) problem for UAV swarms in complex environments. Firstly, to overcome the dependency of traditional modeling methods on regular terrain environments, this study proposes an improved cellular decomposition… More >

  • Open Access

    REVIEW

    Collision-Free Satellite Constellations: A Comprehensive Review on Autonomous and Collaborative Algorithms

    Ghulam E Mustafa Abro1,*, Altaf Mugheri2,#, Zain Anwar Ali3,#

    Revue Internationale de Géomatique, Vol.34, pp. 301-331, 2025, DOI:10.32604/rig.2025.065595 - 05 June 2025

    Abstract Swarm intelligence, derived from the collective behaviour of biological entities, is a novel methodology for overseeing satellite constellations within decentralized control systems. Conventional centralized control systems in satellite constellations encounter constraints in scalability, resilience, and fault tolerance, particularly in extensive constellations. This research examines the use of swarm-based multi-agent systems and distributed algorithms for efficient communication, collision avoidance, and collaborative task execution in satellite constellations. We provide a comprehensive study of current swarm control algorithms, their relevance to satellite systems, and identify areas requiring further research. Principal subjects encompass decentralized decision-making, self-organization, adaptive communication protocols, More >

  • Open Access

    REVIEW

    Stochastic Fractal Search: A Decade Comprehensive Review on Its Theory, Variants, and Applications

    Mohammed A. El-Shorbagy1, Anas Bouaouda2,*, Laith Abualigah3,4, Fatma A. Hashim5,6

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.3, pp. 2339-2404, 2025, DOI:10.32604/cmes.2025.061028 - 03 March 2025

    Abstract With the rapid advancements in technology and science, optimization theory and algorithms have become increasingly important. A wide range of real-world problems is classified as optimization challenges, and meta-heuristic algorithms have shown remarkable effectiveness in solving these challenges across diverse domains, such as machine learning, process control, and engineering design, showcasing their capability to address complex optimization problems. The Stochastic Fractal Search (SFS) algorithm is one of the most popular meta-heuristic optimization methods inspired by the fractal growth patterns of natural materials. Since its introduction by Hamid Salimi in 2015, SFS has garnered significant attention… More >

  • Open Access

    ARTICLE

    Enhanced UAV Pursuit-Evasion Using Boids Modelling: A Synergistic Integration of Bird Swarm Intelligence and DRL

    Weiqiang Jin1,#, Xingwu Tian1,#, Bohang Shi1, Biao Zhao1,*, Haibin Duan2, Hao Wu3

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 3523-3553, 2024, DOI:10.32604/cmc.2024.055125 - 12 September 2024

    Abstract The UAV pursuit-evasion problem focuses on the efficient tracking and capture of evading targets using unmanned aerial vehicles (UAVs), which is pivotal in public safety applications, particularly in scenarios involving intrusion monitoring and interception. To address the challenges of data acquisition, real-world deployment, and the limited intelligence of existing algorithms in UAV pursuit-evasion tasks, we propose an innovative swarm intelligence-based UAV pursuit-evasion control framework, namely “Boids Model-based DRL Approach for Pursuit and Escape” (Boids-PE), which synergizes the strengths of swarm intelligence from bio-inspired algorithms and deep reinforcement learning (DRL). The Boids model, which simulates collective… More >

  • Open Access

    ARTICLE

    Microarray Gene Expression Classification: An Efficient Feature Selection Using Hybrid Swarm Intelligence Algorithm

    Punam Gulande*, R. N. Awale

    Computer Systems Science and Engineering, Vol.48, No.4, pp. 937-952, 2024, DOI:10.32604/csse.2024.046123 - 17 July 2024

    Abstract The study of gene expression has emerged as a vital tool for cancer diagnosis and prognosis, particularly with the advent of microarray technology that enables the measurement of thousands of genes in a single sample. While this wealth of data offers invaluable insights for disease management, the high dimensionality poses a challenge for multiclass classification. In this context, selecting relevant features becomes essential to enhance classification model performance. Swarm Intelligence algorithms have proven effective in addressing this challenge, owing to their ability to navigate intricate, non-linear feature-class relationships. This paper introduces a novel hybrid swarm More >

  • Open Access

    ARTICLE

    An Opposition-Based Learning-Based Search Mechanism for Flying Foxes Optimization Algorithm

    Chen Zhang1, Liming Liu1, Yufei Yang1, Yu Sun1, Jiaxu Ning2, Yu Zhang3, Changsheng Zhang1,4,*, Ying Guo4

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 5201-5223, 2024, DOI:10.32604/cmc.2024.050863 - 20 June 2024

    Abstract The flying foxes optimization (FFO) algorithm, as a newly introduced metaheuristic algorithm, is inspired by the survival tactics of flying foxes in heat wave environments. FFO preferentially selects the best-performing individuals. This tendency will cause the newly generated solution to remain closely tied to the candidate optimal in the search area. To address this issue, the paper introduces an opposition-based learning-based search mechanism for FFO algorithm (IFFO). Firstly, this paper introduces niching techniques to improve the survival list method, which not only focuses on the adaptability of individuals but also considers the population’s crowding degree More >

  • Open Access

    ARTICLE

    An Effective Hybrid Model of ELM and Enhanced GWO for Estimating Compressive Strength of Metakaolin-Contained Cemented Materials

    Abidhan Bardhan1,*, Raushan Kumar Singh2, Mohammed Alatiyyah3, Sulaiman Abdullah Alateyah4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 1521-1555, 2024, DOI:10.32604/cmes.2023.044467 - 29 January 2024

    Abstract This research proposes a highly effective soft computing paradigm for estimating the compressive strength (CS) of metakaolin-contained cemented materials. The proposed approach is a combination of an enhanced grey wolf optimizer (EGWO) and an extreme learning machine (ELM). EGWO is an augmented form of the classic grey wolf optimizer (GWO). Compared to standard GWO, EGWO has a better hunting mechanism and produces an optimal performance. The EGWO was used to optimize the ELM structure and a hybrid model, ELM-EGWO, was built. To train and validate the proposed ELM-EGWO model, a sum of 361 experimental results… More >

  • Open Access

    ARTICLE

    Ensemble of Population-Based Metaheuristic Algorithms

    Hao Li, Jun Tang*, Qingtao Pan, Jianjun Zhan, Songyang Lao

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 2835-2859, 2023, DOI:10.32604/cmc.2023.038670 - 08 October 2023

    Abstract No optimization algorithm can obtain satisfactory results in all optimization tasks. Thus, it is an effective way to deal with the problem by an ensemble of multiple algorithms. This paper proposes an ensemble of population-based metaheuristics (EPM) to solve single-objective optimization problems. The design of the EPM framework includes three stages: the initial stage, the update stage, and the final stage. The framework applies the transformation of the real and virtual population to balance the problem of exploration and exploitation at the population level and uses an elite strategy to communicate among virtual populations. The… More >

  • Open Access

    ARTICLE

    Muti-Fusion Swarm Intelligence Optimization Algorithm in Base Station Coverage Optimization Problems

    Zhenyu Yan1,*, Haotian Bian2

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 2241-2257, 2023, DOI:10.32604/csse.2023.040603 - 28 July 2023

    Abstract As millimeter waves will be widely used in the Internet of Things (IoT) and Telematics to provide high bandwidth communication and mass connectivity, the coverage optimization of base stations can effectively improve the quality of communication services. How to optimize the convergence speed of the base station coverage solution is crucial for IoT service providers. This paper proposes the Muti-Fusion Sparrow Search Algorithm (MFSSA) optimize the situation to address the problem of discrete coverage maximization and rapid convergence. Firstly, the initial swarm diversity is enriched using a sine chaotic map, and dynamic adaptive weighting is… More >

Displaying 1-10 on page 1 of 43. Per Page