Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (300)
  • Open Access

    ARTICLE

    ROLE OF MAXWELL VELOCITY AND SMOLUCHOWSKI TEMPERATURE JUMP SLIP BOUNDARY CONDITIONS TO NON-NEWTONIAN CARREAU FLUID

    T. Sajid , M. Sagheer, S. Hussain

    Frontiers in Heat and Mass Transfer, Vol.14, No.1, pp. 1-12, 2020, DOI:10.5098/hmt.14.28

    Abstract The forthright aim of this correspondence is to examine the conduct of MHD, viscous dissipation and Joule heating on three dimensional nonNewtonian Carreau fluid flow over a linear stretching surface. Impact of non-linear Rosseland thermal radiation and homogenous/heterogenous reaction process have been also considered to examine the heat and mass transfer process during fluid flow. The velocity and thermal slip effect at the surface have also been scrutinized in detail. By utilizing a suitable transformation, the modelled partial differential equations (PDEs) are renovated into ordinary differential equations (ODEs) and furthermore solved with the help of the numerical procedure namely the… More >

  • Open Access

    ARTICLE

    CONVECTIVE HOT AIR DRYING KINETICS OF RED BEETROOT IN THIN LAYERS

    Abhishek Dasorea,* , Tarun Polavarapub , Ramakrishna Konijetic , Naveen Puppalad ,

    Frontiers in Heat and Mass Transfer, Vol.14, No.1, pp. 1-8, 2020, DOI:10.5098/hmt.14.23

    Abstract The effect of air temperature on drying kinetics of red beetroot slices was investigated experimentally in a cabinet tray dryer. Drying was carried out at 70, 75, 80, and 85 ° More >

  • Open Access

    ARTICLE

    EFFECTS OF EVAPORATING TEMPERATURE ON FLOW PATTERN IN A HORIZONTAL EVAPORATOR

    Andriyanto Setyawana,*

    Frontiers in Heat and Mass Transfer, Vol.14, No.1, pp. 1-6, 2020, DOI:10.5098/hmt.14.22

    Abstract In this paper, the effect of evaporating temperature on the void fraction and flow pattern of R290 in an evaporator of air conditioning unit has been studied. The analysis was carried out for evaporator diameter of 7.9 mm and 6.3 mm and cooling capacity of 2.64 kW and 5.28 kW. The analysis was conducted at evaporating temperature of -20°C to +5°C with an increment of 5°C. At the inlet of evaporator, the void fraction ranges from 0.932 to 0.984, whereas at the outlet the void fraction is 1. Testing the void fraction by using 3 available correlations gives the good… More >

  • Open Access

    ARTICLE

    COMPARISON OF CFD AND EMPIRICAL MODELS FOR PREDICTING WALL TEMPERATURE AT SUPERCRITICAL CONDITIONS OF WATER

    S. Ananda, S. Suresha, R. Dhanuskodib, D. Santhosh Kumarb,*

    Frontiers in Heat and Mass Transfer, Vol.14, No.1, pp. 1-9, 2020, DOI:10.5098/hmt.14.8

    Abstract The present work investigates the wall temperature prediction at supercritical pressure of water by CFD and compares the prediction of CFD and that of 11 empirical correlations available in literature. Supercritical-water heat transfer experimental data, covering a mass flux range of 400-1500 kg/m2s, heat flux range of 150-1000 kW/m2, at pressure 241 bar and diameter 10 mm tube, were obtained from literature. CFD simulations have been carried out for those operating conditions and compared with experimental data. Around 362 experimental wall temperature data of both heat transfer enhancement and heat transfer deterioration region have been taken for comparison. A visual… More >

  • Open Access

    ARTICLE

    FLUID FLOW AND HEAT TRANSFER OVER A STRETCHING SHEET WITH TEMPERATURE DEPENDENT PRANDTL NUMBER AND VISCOSITY

    N. Govindaraj, A. K. Singh, Pankaj Shukla

    Frontiers in Heat and Mass Transfer, Vol.15, No.1, pp. 1-8, 2020, DOI:10.5098/hmt.15.20

    Abstract A numerical study of fluid flow over stretching sheet with temperature dependent properties has been performed induced by mixed convection. The significant variation of the Prandtl number and viscosity in the temperature is observed [see table 1]. Viscosity and Prandtl number are vary in inverse of the linear function. The physical problem modeled in the mathematical equations in dimension form, which is converted to the non-dimensional equations by applying similarity transformations and suitable boundary conditions. The mathematical modelling problem is transformed PDE’s are numerically solved using Quasilinearization technique and FDM. The current numerical data has been presented in terms of… More >

  • Open Access

    ARTICLE

    ENTROPY GENERATION AND TEMPERATURE GRADIENT HEAT SOURCE EFFECTS ON MHD COUETTE FLOW WITH PERMEABLE BASE IN THE PRESENCE OF VISCOUS AND JOULES DISSIPATION

    K.S. Balamurugana,*, N. Udaya Bhaskara Varmab, J.L. Ramaprasadc

    Frontiers in Heat and Mass Transfer, Vol.15, No.1, pp. 1-7, 2020, DOI:10.5098/hmt.15.8

    Abstract In this paper the entropy generation and temperature gradient heat source effects on MHD couette flow with permeable base in the presence of thermal radiation, viscous and joule's dissipation is studied. An exact solution of governing equations has been attained in closed form. The influences of several parameters on the velocity and temperature profiles and entropy generation are analyzed through graphs. Bejan number for different values have been calculated and displayed pictorially. The skin friction coefficient and Nusselt number at channel walls are derived and discussed their behaviour through tables. The entropy generation increases with intensifying magnetic field or thermal… More >

  • Open Access

    ARTICLE

    Experimental Study of Thermal-Hydraulic-Mechanical Coupling Behavior of High-Performance Concrete

    Wei Chen1,*, Wenhao Zhao1, Yue Liang1, Frederic Skoczylas2

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.9, pp. 2417-2430, 2023, DOI:10.32604/fdmp.2023.030028

    Abstract The design of an underground nuclear waste disposal requires a full characterization of concrete under various thermo-hydro-mechanical-chemical conditions. This experimental work studied the characterization of coupled thermo-hydro-mechanical effects using concretes made with cement CEM I or CEM V/A (according to European norms). Uniaxial and triaxial compression under 5 MPa confining pressure tests were performed under three different temperatures (T = 20°C, 50°C, and 80°C). The two concretes were dried under relative humidity (RH) to obtain a partially saturated state of approximately 70%. The results showed that the effects of water saturation and confining pressure are more important than that of… More >

  • Open Access

    ARTICLE

    In Tube Condensation: Changing the Pressure Drop into a Temperature Difference for a Wire-on-Tube Heat Exchanger

    Louay Abd Al-Azez Mahdi, Mohammed A. Fayad, Miqdam T. Chaichan*

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.9, pp. 2201-2214, 2023, DOI:10.32604/fdmp.2023.027166

    Abstract A theoretical study based on the Penalty factor (PF) method by Cavallini et al. is conducted to show that the pressure drop occurring in a wire-on-tube heat exchanger can be converted into a temperature difference for two types of refrigerants R-134a and R-600a typically used for charging refrigerators and freezers. The following conditions are considered: stratified or stratified-wavy flow condensation occurring inside the smooth tube of a wire-on-tube condenser with diameter 3.25, 4.83, and 6.299 mm, condensation temperatures 35°C, 45°C, and 54.4°C and cover refrigerant mass flow rate spanning the interval from 1 to 7 kg/hr. The results show that the… More > Graphic Abstract

    In Tube Condensation: Changing the Pressure Drop into a Temperature Difference for a Wire-on-Tube Heat Exchanger

  • Open Access

    ARTICLE

    A Darcy-Law Based Model for Heat and Moisture Transfer in a Hill Cave

    Fei Liu1, Dongliang Zhang2,*, Qifu Zhu1, Qingyong Su1

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.9, pp. 2345-2359, 2023, DOI:10.32604/fdmp.2023.027084

    Abstract A hill can be regarded as an environmental carrier of heat. Water, rocks and the internal moisture naturally present in such environment constitute a natural heat accumulator. In the present study, the heat and moisture transfer characteristics in a representative hill cave have been simulated via a method relying on the Darcy’s law. The simulations have been conducted for both steady and unsteady conditions to discern the influence of permeability and geometric parameters on the thermal and moisture transfer processes. The reliability of the simulation has been verified through comparison of the numerical results with the annual observation data. As… More > Graphic Abstract

    A Darcy-Law Based Model for Heat and Moisture Transfer in a Hill Cave

  • Open Access

    ARTICLE

    Correlation Analysis of Wind Turbine Temperature Rise and Exergy Efficiency Based on Field-Path Coupling

    Caifeng Wen1,2, Qiang Wang1,*, Yang Cao1, Liru Zhang1,2, Wenxin Wang3, Boxin Zhang1, Qian Du1

    Energy Engineering, Vol.120, No.7, pp. 1603-1619, 2023, DOI:10.32604/ee.2023.027074

    Abstract To solve the problems of large losses and low productivity of permanent magnet synchronous generators used in wind power systems, the field-circuit coupling method is used to accurately solve the electromagnetic field and temperature field of the generator. The loss distribution of the motor is accurately obtained by considering the influence of external circuit characteristics on its internal physical field. By mapping the losses to the corresponding part of the three-dimensional finite element model of the motor, the temperature field is solved, and the global temperature distribution of the generator, considering the influence of end windings, is obtained. By changing… More >

Displaying 1-10 on page 1 of 300. Per Page  

Share Link