Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (496)
  • Open Access

    ARTICLE

    Spikelet Filling Characteristics in Early-Season Rice Experiencing High Temperatures during Ripening

    Jiazhou Li1,2, Mingyu Zhang1, Xing Li1,3, Fangbo Cao1,2, Jiana Chen1,2, Weiqin Wang1,2, Huabin Zheng1,2, Min Huang1,2,4,*

    Phyton-International Journal of Experimental Botany, Vol.95, No.1, 2026, DOI:10.32604/phyton.2025.075255 - 30 January 2026

    Abstract Spikelet filling characteristics in early-season rice in southern China may be distinctive due to its exposure to high temperatures during the ripening period. However, limited information is currently available on these characteristics. This study aimed to characterize spikelet filling in early-season rice and identify the key factors contributing to its improvement. Field experiments were conducted over two years (2021 and 2022) to mainly investigate the proportions of fully-filled, partially-filled, and empty spikelets, along with the biomass-fertilized spikelet ratio and harvest index, in 11 early-season rice varieties. The results revealed significant varietal variation in spikelet filling,… More >

  • Open Access

    ARTICLE

    Prediction of Root Zone Temperature Dynamics at Effective Depth on Lettuce Production in Greenhouse Using Sensitivity and Feature Importance Analysis with XGBoost

    Hasan Kaan Kucukerdem*

    Phyton-International Journal of Experimental Botany, Vol.95, No.1, 2026, DOI:10.32604/phyton.2026.074188 - 30 January 2026

    Abstract Root-zone temperature (RZT) strongly affects plant growth, nutrient uptake and tolerance to environmental stress, making its regulation a key challenge in greenhouse cultivation in cold climates. This study aimed to assess the potential of passive techniques, namely black polyethylene mulch and row covers, for modifying RZT dynamics in lettuce (Lactuca sativa L.) production and to evaluate the predictive performance of the eXtreme Gradient Boosting (XGBoost) algorithm. Experiments were conducted in Iğdır, Türkiye, over a 61-day period, with soil temperature continuously monitored at depths of 1–30 cm under mulched and non-mulched conditions, alongside measurements of greenhouse air… More >

  • Open Access

    ARTICLE

    A TimeXer-Based Numerical Forecast Correction Model Optimized by an Exogenous-Variable Attention Mechanism

    Yongmei Zhang*, Tianxin Zhang, Linghua Tian

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.073159 - 12 January 2026

    Abstract Marine forecasting is critical for navigation safety and disaster prevention. However, traditional ocean numerical forecasting models are often limited by substantial errors and inadequate capture of temporal-spatial features. To address the limitations, the paper proposes a TimeXer-based numerical forecast correction model optimized by an exogenous-variable attention mechanism. The model treats target forecast values as internal variables, and incorporates historical temporal-spatial data and seven-day numerical forecast results from traditional models as external variables based on the embedding strategy of TimeXer. Using a self-attention structure, the model captures correlations between exogenous variables and target sequences, explores intrinsic More >

  • Open Access

    ARTICLE

    A Temperature-Indexed Concrete Damage Plasticity Model Incorporating Bond-Slip Mechanism for Thermo-Mechanical Analysis of Reinforced Concrete Structures

    Wu Feng1,2,*, Tengku Anita Raja Hussin1, Xu Yang3

    Structural Durability & Health Monitoring, Vol.20, No.1, 2026, DOI:10.32604/sdhm.2025.071664 - 08 January 2026

    Abstract This study investigates the thermo–mechanical behavior of C40 concrete and reinforced concrete subjected to elevated temperatures up to 700°C by integrating experimental testing and advanced numerical modeling. A temperature-indexed Concrete Damage Plasticity (CDP) framework incorporating bond–slip effects was developed in Abaqus to capture both global stress–strain responses and localized damage evolution. Uniaxial compression tests on thermally exposed cylinders provided residual strength data and failure observations for model calibration and validation. Results demonstrated a distinct two-stage degradation regime: moderate stiffness and strength reduction up to ~400°C, followed by sharp deterioration beyond 500°C–600°C, with residual capacity at… More >

  • Open Access

    ARTICLE

    Ultrasonic Defect Localization Correction Method under the Influence of Non-Uniform Temperature Field

    Jianhua Du1, Shaofeng Wang1, Ting Gao2, Huiwen Sun2, Wenjing Liu1,*

    Structural Durability & Health Monitoring, Vol.20, No.1, 2026, DOI:10.32604/sdhm.2025.071189 - 08 January 2026

    Abstract In ultrasonic non-destructive testing of high-temperature industrial equipment, sound velocity drift induced by non-uniform temperature fields can severely compromise defect localization accuracy. Conventional approaches that rely on room-temperature sound velocities introduce systematic errors, potentially leading to misjudgment of safety-critical components. Two primary challenges hinder current methods: first, it is difficult to monitor real-time changes in sound velocity distribution within a thermal gradient; second, traditional uniform-temperature correction models fail to capture the nonlinear dependence of material properties on temperature and their effect on ultrasonic velocity fields. Here, we propose a defect localization correction method based on… More >

  • Open Access

    ARTICLE

    Influence of Sulfonated Chitosan on Conductivity of Sulfonated Polyether Ether Ketone (SPEEK) at Room Temperature

    Aina Aqilah Mohd Rizal1, Oskar Hasdinor Hassan2, Nor Kartini Jaafar1,2, Masnawi Mustaffa1, Mohd Tajudin Mohd Ali1,*, Ajis Lepit3, Nazli Ahmad Aini1,2,*

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.071726 - 27 December 2025

    Abstract Proton exchange membrane (PEM) is an integral component in fuel cells which enables proton transport for efficient energy conversion. Sulfonated Polyether Ether Ketone (SPEEK) has emerged as a cost-effective option with non-fluorinated aromatic backbones for Proton Exchange Membrane Fuel Cell (PEMFC) applications, even though it exhibits lower proton conductivity compared to Nafion. This work aims to study the influence of Sulfonated Chitosan (SCS) concentrations on proton conductivity of SPEEK-based PEM at room temperature. SPEEK was synthesized using a sulfonation process with concentrated sulfuric acid at room temperature. SCS was synthesized via reflux of CS and… More > Graphic Abstract

    Influence of Sulfonated Chitosan on Conductivity of Sulfonated Polyether Ether Ketone (SPEEK) at Room Temperature

  • Open Access

    ARTICLE

    Atomistic Simulation Study on Spall Failure and Damage Evolution in Single-Crystalline Ta at Elevated Temperatures

    Yuntian Wang1,2, Taohua Liang1,2, Yuan Zhou1,2, Weimei Shi1,2, Lijuan Huang1,2, Yuzhu Guo3,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-26, 2026, DOI:10.32604/cmc.2025.071624 - 09 December 2025

    Abstract This investigation utilizes non-equilibrium molecular dynamics (NEMD) simulations to explore shock-induced spallation in single-crystal tantalum across shock velocities of 0.75–4 km/s and initial temperatures from 300 to 2000 K. Two spallation modes emerge: classical spallation for shock velocity below 1.5 km/s, with solid-state reversible Body-Centered Cubic (BCC) to Face-Centered Cubic (FCC) or Hexagonal Close-Packed (HCP) phase transformations and discrete void nucleation-coalescence; micro-spallation for shock velocity above 3.0 km/s, featuring complete shock-induced melting and fragmentation, with a transitional regime (2.0–2.5 km/s) of partial melting. Spall strength decreases monotonically with temperature due to thermal softening. Elevated temperatures More >

  • Open Access

    PROCEEDINGS

    High-Temperature Fracture Behavior and Toughening Mechanisms of PIP-C/SiC Composites: An Integrated Experimental and Phase-Field Study

    Kunjie Wang, Chenghai Xu*, Xinliang Zhao, Songhe Meng

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.34, No.1, pp. 1-1, 2025, DOI:10.32604/icces.2025.011534

    Abstract Considering the high-temperature application environment and quasi-brittle characteristics, the high-temperature fracture toughness of C/SiC composites is of great significance for the safety application of components in service.
    In this work, the fracture toughness of PIP-C/SiC composites at 25–1600 ℃ in inert atmosphere was tested. The test results show that the fracture toughness and modes of C/SiC composites have significant temperature dependence and difference in in-plane and out-of-plane orientations. With the rising of temperature, the carrying capacity and KIC of C/SiC composites increase first and then decrease, and an inflection point occurs near the fabrication temperature.… More >

  • Open Access

    ARTICLE

    Time-Resolved Experimental Analysis of Granite–Mortar Interface Permeability under High-Temperature Conditions

    Wei Chen*, Yuanteng Zhao, Yue Liang

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.12, pp. 3033-3053, 2025, DOI:10.32604/fdmp.2025.073778 - 31 December 2025

    Abstract In deep underground engineering, geological disposal of nuclear waste, and geothermal development, the granite–mortar interface represents a critical weak zone that strongly influences sealing performance under high-temperature conditions. While previous studies have primarily focused on single materials, the dynamic evolution of interface permeability under thermal loading remains insufficiently understood. In this study, time-resolved gas permeability measurements under thermal cycling (20°C → 150°C → 20°C) were conducted, complemented by multi-scale microstructural characterization, to investigate the nonlinear evolution of permeability. Experimental results indicate that interface permeability at room temperature is approximately one order of magnitude higher than… More >

  • Open Access

    ARTICLE

    Analytical Modeling of Internal Thermal Mass: Transient Heat Conduction in a Sphere under Constant, Exponential, and Periodic Ambient Temperatures

    Liangjian Lei1,2, Yihang Lu1,2,*

    Frontiers in Heat and Mass Transfer, Vol.23, No.6, pp. 2109-2126, 2025, DOI:10.32604/fhmt.2025.072643 - 31 December 2025

    Abstract Internal thermal mass, such as furniture and partitions, plays a crucial role in enhancing building energy efficiency and indoor thermal comfort by passively regulating temperature fluctuations. However, the irregular geometry of these elements poses a significant challenge for accurate modeling in building energy simulations. This study addresses this gap by developing a rigorous analytical model that idealizes internal thermal mass as a sphere, thereby capturing multi-directional heat conduction effects that are neglected in simpler one-dimensional slab models. The transient heat conduction within the sphere is solved analytically using Duhamel’s theorem for three representative indoor air… More >

Displaying 1-10 on page 1 of 496. Per Page