Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Multi-Band Metamaterial Antenna for Terahertz Applications

    Adel Y. I. Ashyap1, M. Inam2, M. R. Kamarudin1, M. H. Dahri3, Z. A. Shamsan4,*, K. Almuhanna4, F. Alorifi4

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 1765-1782, 2023, DOI:10.32604/cmc.2023.030618

    Abstract A multi-band metamaterial antenna is proposed to operate at the terahertz (THz) band for medical applications. The proposed structure is designed on a polyimide as a support layer, and its radiating elements are made of graphene. Initially, the design is started with a conventional shape showing a single operating frequency at 1.1 THz. To achieve a multi-band operating frequency, the conventional shape was replaced with the proposed metamaterial as a radiating patch that has properties not exist in nature. The multi-band frequencies are obtained without compromising the overall size of the design. The overall size is 600 × 600 × 25 μm3. The operating… More >

  • Open Access

    ARTICLE

    Computational Investigation of Multiband EMNZ Metamaterial Absorber for Terahertz Applications

    Ismail Hossain1, Md Samsuzzaman2, Mohd Hafiz Baharuddin3,*, Norsuzlin Binti Mohd Sahar1, Mandeep Singh Jit Singh1, Mohammad Tariqul Islam3

    CMC-Computers, Materials & Continua, Vol.71, No.2, pp. 3905-3920, 2022, DOI:10.32604/cmc.2022.022027

    Abstract This study presents an Epsilon Mu near-zero (EMNZ) nanostructured metamaterial absorber (NMMA) for visible regime applications. The resonator and dielectric layers are made of tungsten (W) and quartz (fused), where the working band is expanded by changing the resonator layer's design. Due to perfect impedance matching with plasmonic resonance characteristics, the proposed NMMA structure is achieved an excellent absorption of 99.99% at 571 THz, 99.50% at 488.26 THz, and 99.32% at 598 THz frequencies. The absorption mechanism is demonstrated by the theory of impedance, electric field, and power loss density distributions, respectively. The geometric parameters are explored and analyzed to… More >

Displaying 1-10 on page 1 of 2. Per Page