Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    ARTICLE

    ASSESSMENT OF TURBULENCE MODELS IN THE PREDICTION OF FLOW FIELD AND THERMAL CHARACTERISTICS OF WALL JET

    Arvind Pattamattaa,*, Ghanshyam Singhb

    Frontiers in Heat and Mass Transfer, Vol.3, No.2, pp. 1-11, 2012, DOI:10.5098/hmt.v3.2.3005

    Abstract The present study deals with the assessment of different turbulence models for heated wall jet flow. The velocity field and thermal characteristics for isothermal and uniform heat flux surfaces in the presence of wall jet flow have been predicted using different turbulence models and the results are compared against the experimental data of Wygnanski et al. (1992), Schneider and Goldstein (1994), and AbdulNour et al. (2000). Thirteen different turbulence models are considered for validation, which include the Standard k-ε (SKE), Realizable k-ε (RKE), shear stress transport (SST), Sarkar & So (SSA), v 2 -f, Reynolds stress Model (RSM), and Spalart… More >

  • Open Access

    ARTICLE

    Numerical Calculation of Transient Thermal Characteristics of Nozzle Flowmeter

    Xin Li1, Shaohan Zheng1,2, Yuliang Zhang1,*, Minfeng Lv3

    Frontiers in Heat and Mass Transfer, Vol.21, pp. 245-264, 2023, DOI:10.32604/fhmt.2023.041778

    Abstract This article aims to reveal the transient thermal characteristics of the solid domain in a nozzle flowmeter when measuring fluids of varying temperatures. Based on finite element method, the transient numerical calculation of the thermal characteristics of each component of the nozzle flowmeter has been conducted. The research shows that: as the fluid passes through the flowmeter, the high heat flux area inside the nozzle flowmeter gradually transfer from the center of the nozzle to the inlet and outlet, as well as the pressure tapping points upstream and downstream; High thermal stress zones are present near the upstream and downstream… More >

  • Open Access

    ARTICLE

    THERMAL PERFORMANCE OF LOW-COST COOLING SYSTEMS FOR TRANSMIT/RECEIVE MODULES OF PHASED ARRAY ANTENNAS WITH AND WITHOUT GRAVITY HEAT PIPES

    Yu.E. Nikolaenkoa , D.V. Pekurb,*, V.Yu. Кravetsa, V.M. Sorokinb, D.V. Kozaka , R.S. Melnyka, L.V. Lipnitskyia, A.S. Solomakhaa

    Frontiers in Heat and Mass Transfer, Vol.18, pp. 1-13, 2022, DOI:10.5098/hmt.18.23

    Abstract This study compares thermal characteristics of two design versions of a new low-cost air-cooling system with a standard heat sink profile and built-in flat heat pipes of a simple design with a similar cooling system design without the heat pipes. The aim of the work is to determining the thermal characteristics and choosing the most effective option in a practical context. Using computer simulation in the Solidworks Flow Simulation standard software package allowed determining how the temperature of 8 transistors with a total power of 224 W was affected by changes in air velocity from 1 to 30 m/s, effective… More >

  • Open Access

    ARTICLE

    HYDROTHERMAL CHARACTERISTICS OF WATER FLOW INTO A DIMPLED TUBE HEAT EXCHANGER: A PARAMETRIC STUDY

    Mousa Aqeel Ali*, Saad Najeeb Shehab

    Frontiers in Heat and Mass Transfer, Vol.19, pp. 1-10, 2022, DOI:10.5098/hmt.19.39

    Abstract In this study, the hydrothermal water flow characteristics using a dimpled inner tube heat exchanger are investigated experimentally and numerically. A numerical analysis has performed on two types of dimpled tubes (In-lined and staggered distributions) for two distribution angles 60o and 90o , and two dimple diameters(4 mm and 6 mm) with constant pitch ratio (X/d=8). In experimental part, a staggered arrangement dimpled inner tube distribution with angle 60o , dimple diameter of 6 mm and constant pitch ratio (X/d=8)is used as well as plain tube. The results illustrate that the heat transfer as Nusselt number for case of staggered… More >

  • Open Access

    ARTICLE

    CFD-Based Numerical Analysis of the Thermal Characteristics of an Electric Vehicle Power Battery

    Yaya Wang1,*, Chao Ma2

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.1, pp. 159-171, 2022, DOI:10.32604/fdmp.2022.017743

    Abstract Towards the end to solve the problem of temperature rise in the power battery of electric vehicles, a method based on the coupling of electrochemical, thermal and hydrodynamic aspects is implemented. The method relies on the COMSOL Multiphysics software, which is used here to simulate the thermal behaviour, the related fluid-dynamics and the life attenuation of the power battery. A 3D battery model is built assuming a cylindrical geometry. The diameter of the battery is 18 mm, and its length is 65 mm. The battery charges and discharges at 3C, and the initial temperature is 25°C. Intake flow is set to 0.5 m/s… More >

Displaying 1-10 on page 1 of 5. Per Page