Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    ARTICLE

    THERMAL CHARACTERIZATION OF AS4/3501-6 CARBON-EPOXY COMPOSITE

    Bradley Dolemana , Messiha Saada,*

    Frontiers in Heat and Mass Transfer, Vol.4, No.2, pp. 1-8, 2013, DOI:10.5098/hmt.v4.2.3006

    Abstract Thermal diffusivity, specific heat, and thermal conductivity are important thermophysical properties of composite materials. These properties play a significant role in the engineering design process of space systems, aerospace vehicles, transportation, energy storage devices, and power generation including fuel cells. This paper examines these thermophysical properties of the AS4/3501-6 composite using the xenon flash method to measure the thermal diffusivity in accordance with ASTM E1461 and differential scanning calorimetry to measure the specific heat in accordance with ASTM E1269. The thermal conductivity was then calculated using a proportional relationship between the density, specific heat, and thermal diffusivity. More >

  • Open Access

    ARTICLE

    Glycated Hemoglobin HbA1c: Permittivity Experimental Applications with Some Mathematical Concepts, Temperature and Frequency Variations

    Soliman Abdalla1,2,*, Sherif Kandil2, Waleed El-Shirbeeny1, Fatma Bahabri1,3

    Journal of Renewable Materials, Vol.10, No.9, pp. 2335-2354, 2022, DOI:10.32604/jrm.2022.021211

    Abstract Diabetes disorder turns smoothly to be a global epidemic disorder and the glycated hemoglobin (HbA1c) starts to be an efficient marker of it. The dielectric spectroscopy on different human normal- and diabetic-blood samples is used to characterize and to estimate the HbA1c concentration. “dc-” and ac-measurement of the complex conductivity in the temperature range from 280 K up to 320 K, and in the frequency range from one Hz up to 32 MHz have been performed. The thermal activation energy, ΔEσ, of dc-electric conductivity lies in the range 95 meV < ΔEσ < 115 meV; while the thermal activation energy,… More >

  • Open Access

    ARTICLE

    Synthesis and Characterization of Hydrogels Based on Potato Starch/Poly(vinyl Alcohol)/N,N′-Methylenebisacrylamide

    Diego David Pinzón-Moreno*, Eder Clidio Vicuña-Galindo, José Vulfrano González-Fernández, José Luis Soto-Gonzales, María Verónica Carranza-Oropeza*

    Journal of Renewable Materials, Vol.10, No.8, pp. 2179-2201, 2022, DOI:10.32604/jrm.2022.019793

    Abstract Several hydrogels were synthesized by free-radical polymerization in an aqueous medium based on potato starch (PS), poly(vinyl alcohol) (PVA), and N,N′-Methylenebisacrylamide (MBAm), being possible to study these hydrogels as a function of the proportion of components incorporated. In this way, the products generated from the synthesis were characterized by swelling and deswelling kinetics, the first swelling being verified with Schott and statistical models, allowing to contrast the proximity between the experimental and theoretical behavior. Additionally, water retention in soil (R%), spectroscopy (FTIR), morphological (SEM), and thermal (TGA and DSC) analysis allowing to know the intrinsic characteristics of the material, increasing… More >

  • Open Access

    ARTICLE

    Effect of Phenolation, Lignin-Type and Degree of Substitution on the Properties of Lignin-Modified Phenol-Formaldehyde Impregnation Resins: Molecular Weight Distribution, Wetting Behavior, Rheological Properties and Thermal Curing Profiles

    Marion Thébault1, Larysa Kutuzova2, Sandra Jury1, Iris Eicher1, Edith-Martha Zikulnig-Rusch1, Andreas Kandelbauer2,*

    Journal of Renewable Materials, Vol.8, No.6, pp. 603-630, 2020, DOI:10.32604/jrm.2020.09616

    Abstract Here, the effects of substituting portions of fossil-based phenol in phenol formaldehyde resin by renewable lignin from two different sources are investigated using a factorial screening experimental design. Among the resins consumed by the wood-based industry, phenolics are one of the most important types used for impregnation, coating or gluing purposes. They are prepared by condensing phenol with formaldehyde (PF). One major use of PF is as matrix polymer for decorative laminates in exterior cladding and wet-room applications. Important requirements for such PFs are favorable flow properties (low viscosity), rapid curing behavior (high reactivity) and sufficient self-adhesion capacity (high residual… More >

  • Open Access

    ARTICLE

    Synthesis and Thermal Characterization of Polyurethanes Obtained from Cottonseed and Corn Oil-Based Polyols

    Karina Cruz-Aldaco1, Erika Flores-Loyola2, Cristóbal Noé Aguilar-González1, Nuria Burgos3, Alfonso Jiménez3*

    Journal of Renewable Materials, Vol.4, No.3, pp. 178-184, 2016, DOI:10.7569/JRM.2016.634107

    Abstract The use of vegetable oils to replace fossil feedstock has become an area of opportunity and a priority for study in the field of polymer science. Vegetable oils are considered as renewable resources with high potential, low cost and full availability. The aim of this study is the synthesis of biobased polyols from cottonseed oil (Gossypium barbadanse) and corn oil (Zea mays) as feedstock. Their synthesis was successfully performed, as can be concluded from the determination of their hydroxyl index as well as the structural and thermal characterization carried out in this work. Polyurethanes from biobased polyols were synthesized with… More >

Displaying 1-10 on page 1 of 5. Per Page